Known variables
d=4.6m
initial velocity=0m/s
downward acceleration=-9.8m/s2
d=1/2gt2
4.6=1/2 -9.8 t2
t=0.93s
Answer: D
Rs = 10.0 m/s
The speed of the boat relative to an observer standing on the shore as it crosses the river is 10.0m/s
Explanation:
Since the boat is moving perpendicular to the current of the river, the speed of the boat has two components.
i. 8.0m/s in the direction perpendicular to the current
ii. 6.0m/s in the direction of the current.
So, the resultant speed can be derived by using the equation;
Rs = √(Rx^2 + Ry^2)
Taking
Ry = 8.0m/s
Rx = 6.0m/s
Substituting into the equation, we have;
Rs = √(6.0^2 + 8.0^2)
Rs = √(36+64) = √100
Rs = 10.0 m/s
The speed of the boat relative to an observer standing on the shore as it crosses the river is 10.0m/s
Answer:
Explanation:
Given
acceleration of system a =1.2 m/s^2
Normal Force N=4.45 N
Force exerted F=20 N
Thus


-------1
Normal reaction 


therefore 

The maximum displacement angle of the bob is 13⁰.
The given parameters;
- <em>Length of the pendulum, L = 1.25 m</em>
- <em>Initial velocity of the bob, v = 0.8 m/s</em>
The maximum displacement of the bob is calculated by applying the principle of conservation of energy;

The maximum displacement angle is calculated as follows;

Thus, the maximum displacement angle of the bob is 13⁰.
Learn more here:brainly.com/question/13981780
Current can vary in different branches of a circuit