True
False
False.
True
True
False
Answer:
16.4287
Explanation:
The force and displacement are related by Hooke's law:
F = kΔx
The period of oscillation of a spring/mass system is:
T = 2π√(m/k)
First, find the value of k:
F = kΔx
78 N = k (98 m)
k = 0.796 N/m
Next, find the mass of the unknown weight.
F = kΔx
m (9.8 m/s²) = (0.796 N/m) (67 m)
m = 5.44 kg
Finally, find the period.
T = 2π√(m/k)
T = 2π√(5.44 kg / 0.796 N/m)
T = 16.4287 s
Answer:
25032.47 W
Explanation:
Power is the time rate of doing work, hence,
P = Work done(non conservative) / time
Work done (non conservative) is given as:
W = total K. E. + total P. E.
Total K. E. = 0.5mv²- 0.5mu²
Where v (final velocity) = 7.0m/s, u (initial velocity) = 0m/s
Total P. E. = mgh(f) - mgh(i)
Where h(f) (final height) = 7.2m, h(i) (initial height) = 0 m
=> W = 0.5mv² - mgh(f)
P = [0.5mv² - mgh(f)] / t
P = [(0.5*790*7²) - (790*9.8*7.2)] / 3
P = (19355 + 55742.4) / 3 = 75097.4/3
P = 25032.47 W
History is open to ongoing and changing interpretations because changing <span>values limit interpretation.
So your answer is A.</span>
<u> Ohms law: </u> This law relates voltage difference between two points. Mathematically, the law states that V=IR;
Where
V = voltage difference ; in volts
I = Current ; in Amperes
R = Resistance ; in ohms
<u>1. Answer : </u> given that R = 10 ; V= 12 V ; I = ?
From ohms law, I = V/R
= 12/10
= 1.2 Amp.
<u>2. Answer:</u> given that R = 10 ; V= ? ; I = 5
From ohms law, V = IR
= 10×5 = 50 V
<u>3 . Answer:</u> given that R = ? ; V= 120 ; I = 5
From ohms law, R = V/I
= 120/5
= 24 Ω
<u>4 . Answer:</u> given that R = ? ; V= 10 ; I = 20
From ohms law, R = V/I
= 10/20
= 0.5 Ω
<u>5 . Answer:</u> given that R = 480 ; V= 24 ; I = ?
From ohms law, I = V/R
= 24/480
= 0.05 A
<u>6. Answer:</u> given that R = 150 ; V= ? ; I = 1
From ohms law, V = IR
= 1 × 150
= 150 V