Answer:
*Disclaimer you can't actually do that, or at least not yet because the nearest black hole is at least 1,000 light years away. But if we could...
His journy would be pretty fast and horrific. For him, he would slowly be streched apart or spegetified into a string of atoms as he nears the event horizoin. But for an outside observer he would apear to go slower and slower and would never actualy reach the event horizion. This is becuase of einstines general relativity, massive objects slow time down. He would also apear to become red as the lights wavelength is streched out due to the entense gravity of the black hole.
Answer:

Explanation:
<u>Accelerated Motion</u>
It occurs when an object changes its speed over time. If the changes in speed are uniform, then the acceleration is constant, positive if the speed increases, negative if the speed decreases.
The acceleration is calculated as follows:

The aeroplane starts with a speed of vo=62 m/s and reaches a speed of vf=6 m/s in t=35 s.
The acceleration is:


Answer:
the two gliders collide, the mobile glider will transfer a bit of time to the fixed glider, which is why it comes out with a speed that is smaller than that of the bullet glider.
Explanation:
When the two gliders collide, the mobile glider will transfer a bit of time to the fixed glider, which is why it comes out with a speed that is smaller than that of the bullet glider.
Changes can occur that the gliders unite and move with a cosecant speed less than the initial one.
The whole process must be analyzed using conservation of the moment.
p₀ = m v₀
celestines que clash case
p_f = (m + M) v
po = pf
m v₀ = (n + M) v
v = 
calculemos
v= 
v= 0.09 m/s
elastic shock case
p₀ = m v₀
p_f = m v₁ +M v₂
p₀ = p_f
m v₀ = m v₁ + m v₂
As long as you describe the chemical reactions within the torpedo and explain how torpedoes advanced modern warfare.
The relationship if time according to the speed of light can be represented using Lorentz' time-dilation equation:
T = To / sqrt( 1 - (v^2/c^2) )
Where:
T = new time = ?
To = original time = 1 minute
v = velocity = 0.6c
c = speed of light
Substituting the given values:
T = 1 / sqrt( 1 - (0.6c^2/c^2) <span>)</span>
T = 1 / sqrt( 1 - (0.6^2) <span>)
</span>T = 1.25
Therefore, the alarm clock would ring for 1.25 minutes.