Answer:
The potential energy at point A is 17.1675 J
Explanation:
The capillary potential is the work expended to bring up a unit mass of liquid to a point in a capillary region from a level liquid surface. It is the capillary potential that facilitates the movement of moisture within soil capillaries
In meteorology it is used to describe the level of saturated soil above the water table
Potential energy is the energy inherent in a body by virtue of its position, therefore the potentials of both point A and B are
Point A, elevation = 75 cm capillary potential = -100 cm
Point B, elevation = 25 cm capillary potential = -200 cm
The total potential energy at point A is
Elevation above reference - capillary potential =75-(-100) = 175 cm
which gives per unit mass
PE = m × g × h = 1 kg × 9.81 m/s ² × 1.75 m = 17.1675 kg·m²/s² = 17.1675 J
High frequency = D, short wavelength
1.Record her observation with the time it was hot.
2. Gather info about the pavement and its surroundings. Find out what it's made of and what its temp. is at different times of the day.
3. Come up with a hypothesis about why it is hot.
4. Design an experiment to test the hypothesis. If she thinks the Sun is responsible (which she should b smart enough to know), keep it covered during the day time and check it's temp.
5. Come up with a conclusion. If her hypothesis is not supported, design a new experiment or gather more info.
When we say "<span>The moon's surface gravity is one-sixth that of the earth.",
we mean that the acceleration of gravity on the Moon's surface is 1/6 of
the acceleration of gravity on the Earth's surface.
The acceleration of gravity is (9.8 m/s</span>²) on the Earth's surface, so
<span>it would be (9.8/6 m/s</span>²) on the Moon's surface.
<span>
The weight of any object, right now, is
(object's mass) </span>· (acceleration of gravity where the object is located now) .
<span>
If the object's mass is 24 kg and the object is on the Moon right now,
then its weight is
(24 kg) </span>· (9.8/6 m/s²)
= (24 · 9.8 / 6) kg-m/s²
= 39.2 Newtons
Answer:
19.2*10^6 s
Explanation:
The equation for time dilation is:

Then, if it is observed to have a life of 6*10^6 s, and it travels at 0.95 c:

It has a lifetime of 19.2*10^6 s when observed from a frame of reference in which the particle is at rest.