For this problem, we are asked to calculate for the distance traveled. We set up the equations as follows:
Distance = 61 km/hr * (time + 20.8/60 s) Distance = 98.5 km/hr * time
We equate the two equations, then we can solve for the time spent on the trip. Hope this answers the question. Have a nice day.
Answer:
Increase in wavelength of incident wave also increases the spread angle or spread of the interference pattern.
Explanation:
Solution:-
- The diffraction occurs when light bends in the same medium. The bending is the result of light waves "squeezing" through small openings or "curving" around sharp edges.
- Moreover, waves diffract best when the size of the diffraction opening (or grting or groove) corresponds to the size of the wavelength. Hence, light diffracts more through small openings than through larger openings.
- The formula for diffraction shows a direct relationship between the angle of diffraction (theta) and wavelength:
d sin (θ) = m λ
Where,
λ : Wavelength , θ : The spread angle , d : Slit opening or grating
- We can see that the wavelength λ and spread angle θ are related proportionally. So if we increase the wavelength of incident wave we also increase the spread angle or spread of the interference pattern.
Answer:
Explanation:
Comment
You have to read this carefully enough that you don't mix up energy and forces.
Gravity is a force. If you don't believe me try jumping off a building. Which way are you going to go and why? Down because gravity attracts your mass.
So Magnetism must be a force as well. It acts in one direction, but not a specific one the way gravity acts). It also either attracts or repulses (pushes an object away)
Answer A
<span>The path that moisture takes from the ocean to the runoff that forms a river is:
</span>1.Evaporation (<span>water changes from a liquid to a gas or vapor)</span>
<span>2. Condensation (clouds are formed)
3. Precipitation (</span>Any form of water that falls to the Earth's surface from the clouds)
A charged particle moving in a magnetic field experiences a force equal to:

Thus, the magnitude of the force that the proton experiences is given by:

The magnetic field is perpendicular to the proton's velocity, therefore, we have
. Replacing the given values, we obtain:
