Answer:
1.54 s
Explanation:
Considering that the legs constitute 16% of the total weight of the man then mass, 
The legs also constitute 48% of his height hence 
The moment of inertia of a cylinder rotating about a perpendicular axis at one end is
hence 
We also know that the period is given by 
Here, h=0.5H= 0.5*0.8784=0.4392 m
Taking g as 9.81 kg/m2 then

Answer:
1.16kg is the answer. Hope this helped
Explanation:
Answer:
G. It will take twice as long.
Explanation:
Let's call
the original speed of the plane and
the distance between Dallas and Pensacola. The time the plane originally takes to complete the flight is

In this problem, we are told that the plane encounters wind moving at half of its speed:
, in the opposite direction. This means that the new speed of the plane is

And so, the time the plane takes now to complete the flight is

So, the plane takes twice the time as before.
The potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
<h3>
What is the energy in a capacitor?</h3>
The energy stored in a capacitor is an electrostatic potential energy.
It is related to the charge(Q) and voltage (V) between the capacitor plates.
It is represented as 'U'.
<h3>
How to determine the potential difference</h3>
Formula:
Potential difference, V is the ratio of the charge to the capacitance of a capacitor.
It is calculated using:
V = Q ÷ C
Where Q = charge 5 × 10∧-5C and C = capacitance 10∧-9
Substitute the values into the equation
Potential difference, V = 5 × 10∧-5 ÷ 10∧-9 = 5 × 10∧4 volts
<h3>
How to determine the energy stored</h3>
Formula:
Energy, U = 1 ÷ 2 (QV)
Where Q= charge and V = potential difference across the capacitor
Energy, U = 1 ÷ 2 ( 5 × 10∧-5 × 5 × 10∧4)
= 0.5 × 25 × 10∧-1
= 0.5 × 2.5
= 1. 25 Joules
Therefore, the potential difference across the capacitor is 5 × 10∧4 volts and the energy stored in it is 1. 25 Joules
Learn more about capacitance here:
brainly.com/question/14883923
#SPJ1