B.
Because if you were to be in a room with orange lights the water would appear orange and glowing. Same thing with other colors this is because the sun rays pass through the atmosphere reflecting from a pure white light to a lighter blue and reflecting off of the waters surface.
Answer:
C10H22
Explanation:
Molecular Solids comprises of a Vander waal's force of attraction between the molecule. These forces are very weak when compared to ionic and covalent bond.
In Carbon, Carbon is not a molecule but an atom. One of it unique characteristics is that it forms bonds with other carbon atoms. This property is know as catenation. The bond between these carbon atoms is know as covalent bond.
Graphite is an allotrope of carbon. It exists as black , slippery, hexagonal crystals.The carbon atoms in graphite forms flat layers and are joined together by strong covalent bonds. Graphite can be used as lubricant in engines.
Gold (Au) is an element on the periodic table with atomic number 79 and a mass number 197. It exists as a metal. Most times Gold forms hydrogen bonds.
C10H22 is known as decane. It is the tenth compound formed in the series of alkane family( an organic unsaturated carbon chain family). Alkanes are aliphatic hydrocarbons. The forces of attraction between the alkane family are weak.In decane , their exists Vander waal's force which makes Decane C10H22 a Molecular Solid.
Answer:
-800 kJ/mol
Explanation:
To solve the problem, we have to express the enthalpy of combustion (ΔHc) in kJ per mole (kJ/mol).
First, we have to calculate the moles of methane (CH₄) there are in 2.50 g of substance. For this, we divide the mass into the molecular weight Mw) of CH₄:
Mw(CH₄) = 12 g/mol C + (1 g/mol H x 4) = 16 g/mol
moles CH₄ = mass CH₄/Mw(CH₄)= 2.50 g/(16 g/mol) = 0.15625 mol CH₄
Now, we divide the heat released into the moles of CH₄ to obtain the enthalpy per mole of CH₄:
ΔHc = heat/mol CH₄ = 125 kJ/(0.15625 mol) = 800 kJ/mol
Therefore, the enthalpy of combustion of methane is -800 kJ/mol (the minus sign indicated that the heat is released).
The answer would be 425.599 because 1 ATM is 760 mmHg.