1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet [91]
3 years ago
11

The focal length ____________ when the refractive index of the lens is increased and __________ when the curvature radius of the

lens is increased.
Physics
1 answer:
Ivenika [448]3 years ago
8 0
The focal length would likely decrease as the refractive index and the increase when the curvature radius of the lens increases. The decrease in focal length happens since a higher index of refraction would signify that the rays of the sun striking to an object would tend to bend more.
You might be interested in
A material that has high resistance to the flow of electric current is called an electric ______
lyudmila [28]
A material that has high resistance to the flow of electric current is called an electric resistor
3 0
3 years ago
Read 2 more answers
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begin
Mashutka [201]

The given question is incomplete. The complete question is as follows.

A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is 14,000 + 10,000x − 26,000x^{2}, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.

Explanation:

We will calculate the work done as follows.

     W = \int_{0}^{0.54} F dx

         = \int_{0}^{0.54} (14,000 + 10,000x - 26,000x^{2}) dx

         = [14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}

         = 7560 + 1458 - 1364.69

         = 7653.31 J

or,      = 7.65 kJ       (as 1 kJ = 1000 J)

Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.

5 0
3 years ago
What happens inside an empty tank when it is filled with air?
kobusy [5.1K]

Answer:

An Empty Tank Is Slowly Filled With Air. Water Is Then Added To The Tank, Decreasing The Volume For The Air In The Tank. The Temperature Remains Constant

Explanation:

6 0
3 years ago
Read 2 more answers
Tim and Rick both can run at speed Vr and walk at speed Vw, with Vr > Vw.
miss Akunina [59]

Answer:

Δt =  \frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw}

Explanation:

Hi there!

Using the equation of speed for the whole trip, we can obtain the time each one needed to cover the distance D.

The speed (v) is calculated by dividing the traveled distance (d) over the time needed to cover that distance (t):

v = d/t

Rick traveled half of the distance at Vr and the other half at Vw. Then, when v = Vr, the distance traveled was D/2 and the time is unknown, Δt1:

Vr = D/ (2 · Δt1)

For the other half of the trip the expression of velocity will be:

Vw = D/(2 · Δt2)

The total time traveled is the sum of both Δt:

Δt(total) = Δt1 + Δt2

Then, solving the first equation for Δt1:

Vr = D/ (2 · Δt1)

Δt1 = D/(2 · Vr)

In the same way for the second equation:

Δt2 = D/(2 · Vw)

Δt + Δt2 = D/(2 · Vr) + D/(2 · Vw)

Δt(total) = D/2 · (1/Vr + 1/Vw)

The time needed by Rick to complete the trip was:

Δt(total) = D/2 · (1/Vr + 1/Vw)

Now let´s calculate the time it took Tim to do the trip:

Tim walks half of the time, then his speed could be expressed as follows:

Vw = 2d1/Δt  Where d1 is the traveled distance.

Solving for d1:

Vw · Δt/2 = d1

He then ran half of the time:

Vr = 2d2/Δt

Solving for d2:

Vr · Δt/2 = d2

Since d1 + d2 = D, then:

Vw · Δt/2 +  Vr · Δt/2 = D

Solving for Δt:

Δt (Vw/2 + Vr/2) = D

Δt = D / (Vw/2 + Vr/2)

Δt = D/ ((Vw + Vr)/2)

Δt = 2D / (Vw + Vr)

The time needed by Tim to complete the trip was:

Δt = 2D / (Vw + Vr)

Let´s find the diference between the time done by Tim and the one done by Rick:

Δt(tim) - Δt(rick)

2D / (Vw + Vr) - (D/2 · (1/Vr + 1/Vw))

\frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw} = Δt

Let´s check the result. If Vr = Vw:

Δt = 2D/2Vr - D/2Vr - D/2Vr

Δt = D/Vr - D/Vr = 0

This makes sense because if both move with the same velocity all the time both will do the trip in the same time.

8 0
3 years ago
A positively charged metal sphere, A, is held close to but not touching and identical uncharged sphere, sphere B. Sphere A is no
Yuri [45]

Answer:

The sphere C carries no net charge.

Explanation:

  • When brougth close to the charged sphere A, as charges can move freely in  a conductor, a charge equal and opposite to the one on the sphere A, appears on the sphere B surface facing to the sphere A.
  • As sphere B must remain neutral (due to the principle of conservation of charge) an equal charge, but of opposite sign, goes to the surface also, on the opposite part of the sphere.
  • If sphere A is removed, a charge movement happens in the sphere B, in such a way, that no net charge remains on the surface.
  • If in such state, if  the sphere B (assumed again uncharged completely, without any local charges on the surface), is touched by an initially uncharged sphere C, due to the conservation of  charge principle, no net  charge can be built on sphere C.
3 0
3 years ago
Other questions:
  • What is a mafic rock
    6·1 answer
  • WILL MARK AS BRAINLIEST IF CORRECT ANSWERS PLZ HELP 15 PTS!!!!!!
    14·2 answers
  • Which of the following actions would decrease the energy stored in a parallel plate capacitor when a constant potential differen
    13·1 answer
  • Daisy made the graph shown to display the data recorded during an experiment. Daisy is studying the effect of soil on the growth
    15·2 answers
  • Which physical phenomena is responsible for the earth’s sky appearing blue? scattering reflection dispersion refraction
    9·2 answers
  • What are four main ways weathering can happen
    13·1 answer
  • If a vehicle is moving at 45m/s initially 36m/s after 2.0s and 27m/s after 4.0s at what time will it come to a stop
    10·1 answer
  • Hello can someone please help me with this.
    9·1 answer
  • calculate the percentage increase in speed of the cyclist when the power output changes from 200W to 300W
    11·1 answer
  • Remember to identify all your data, write the equation, and show your work.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!