It's inertia. A rule that you see every day, for example a brick will stay in the same spot unless a force acts on it.
Answer:

Explanation:
From the question we are told that:
Acceleration 
Displacement 
Initial time 
Final Time 
Generally the equation for Velocity of 1.05 travel is mathematically given by
Using Newton's Law of Motion



Generally the equation for Distance traveled before stop is mathematically given by



Generally the equation for Distance to stop is mathematically given by
Since For this Final section
Final velocity 
Initial velocity 
Therefore
Using Newton's Law of Motion


Giving

Therefore



Generally the Total Distance Traveled is mathematically given by



Answer:
D) True. the protostar rotates more quickly.
Explanation:
If the system is isolated, the angular momentum must be retained.
Initial
L₀ = I w₀
Final
=
L₀ = 
I w₀ = 
= I /
w₀
In general, the radius of the cloud decreases significantly to form the star, the moment of inertia must decrease, so the angular velocity must increase
Let's examine the answers
A) False. The opposite happens
B) False. Speed changes
C) False. For this there must be an external force, which does not exist
D) True. You agree with the above
Answer:
Kinetic energy is the energy of a moving body while potential energy is the energy by vutue of it's position
Answer:
E. d and O
Explanation:
"Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double slits or diffraction gratings".
According to Huygens’s principle, "for each element of the wavefront in the slit emits wavelets. These are like rays that start out in phase and head in all directions. (Each ray is perpendicular to the wavefront of a wavelet.) Assuming the screen is very far away compared with the size of the slit, rays heading toward a common destination are nearly parallel".
The destructive interference for a single slit is given by:

Where
d is the slit width
is the light's wavelength
is the angle relative to the original direction of the light
m is the order od the minimum
I represent the intensity
When the intensity and the wavelength are incident normally the angular as we can see on the expression above the angular separation just depends of the distance d and the wavelength O.