The bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Since the chemical reaction is 2CO + O₂ → 2CO₂ and the total bond energy of the products carbon dioxide CO₂ is 1,472 kJ.
Since from the chemical reaction, we have 2 moles of CO₂ which gives 1,472 kJ and there are two carbon-oxygen, C-O bonds in CO₂, then
2 × C-O bond = 1,472 kJ
1 C-O bond = 1.472 kJ/2
C-O bond = 736 kJ
So, the bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Learn more about bond energy here:
brainly.com/question/21670527
Answer:
298.9 million years ago - 251.902 million years ago
Explanation:
It might be in the 2011 Earth Science Review Packet so maybe go check that out
Answer:
You're going to have to convert the grams to moles, and then multiply that with the ratio of heat produced to the ratio of CH4
Answer:
Strontium
Explanation:
In the periodic table, an element with two (2) valence electrons is found on group 2. Group 2 is a group of the periodic table that harbors element called ALKALINE EARTH METALS. As the name implies, they are metals that possess shiny and solid characteristics at room temperature.
Group 2 elements include the following: Beryllium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), barium (Ba), and radium (Ra). Based on the descriptive information in this question, the element being described is a GROUP 2 element. Based on the elements in the option, only STRONTIUM (Sr) is a group 2 element.