The right answer for the question that is being asked and shown above is that: "B) allowing Carolina planters to expand rice cultivation into Georgia's lowlands."
-I hope this is the answer you are looking for.
Answer:
copper will have more change in temperature as compare with aluminum
Explanation:
Hot piece of copper is made in contact with cold piece of aluminium
So here thermal energy transfer will take place from copper to aluminium
so by energy conservation we can say that heat given by copper is same as the heat absorbed by aluminium.
now we have

here we know that
= specific heat capacity of copper
= specific heat capacity of aluminum
given that specific heat capacity of aluminium is more than double that of copper
so we can say

so here if the mass of copper and aluminium is same then

so temperature change of copper is twice the temperature change of aluminium
So copper will have more change in temperature as compare with aluminum
Answer:
9(3x-2y)
Explanation:
27x-18y, the common factor here is 9
9(3x-2y)
There's no such thing as "an unbalanced force".
If all of the forces acting on an object all add up to zero, then we say that
<span>the group </span>of forces is balanced. When that happens, the group of forces
has the same effect on the object as if there were no forces on it at all.
An example:
Two people with exactly equal strength are having a tug-of-war. They pull
with equal force in opposite directions. Each person is sweating and straining,
grunting and groaning, and exerting tremendous force. But their forces add up
to zero, and the rope goes nowhere. The <u>group</u> of forces on the rope is balanced.
On the other hand, if one of the offensive linemen is pulling on one end of
the rope, and one of the cheerleaders is pulling on the other end, then their
forces don't add up to zero, because even though they're opposite, they're
not equal. The <u>group</u> of forces is <u>unbalanced</u>, and the rope moves.
A group of forces is either balanced or unbalanced. A single force isn't.