B. Nuclear fission reactions are slowed down as well.
Neutron moderation is a substance which slows down neutron. In some reaction moderator is same as coolant.
This is also used to slow down nuclear fission reaction and continue chain reactions.
The collision between neutron and nuclei is more elastic and more neutrons will be slowed due to size of the neutron.
Learn more at brainly.com/question/24371385
<h2>
Hello!</h2>
The answer is:
The new volume will be 1 L.
<h2>
Why?</h2>
To solve the problem, since we are given the volume and the first and the second pressure, to calculate the new volume, we need to assume that the temperature is constant.
To solve this problem, we need to use Boyle's Law. Boyle's Law establishes when the temperature is kept constant, the pressure and the volume will be proportional.
Boyle's Law equation is:
So, we are given the information:
Then, isolating the new volume and substituting into the equation, we have:
Hence, the new volume will be 1 L.
Have a nice day!
Option d lo siento si es incorrecto
Answer:
The resultant structure is shown below. This structure contains four shared pairs of electrons, which are located on all four "sides" of carbon's electron dot structure. Each of these shared pairs was created by pairing one of carbon's unpaired electrons with an unpaired electron from chlorine.
Explanation:
Answer:
Amount of excess Carbon (ii) oxide left over = 23.75 g
Explanation:
Equation of the reaction: Fe₂O₃ + 3CO ----> 2Fe + 3CO₂
Molar mass of Fe₂O₃ = 160 g/mol;
Molar mass of Carbon (ii) oxide = 28 g/mol
From the equation of reaction, 1 mole of Fe₂O₃ reacts with 3 moles of carbon (ii) oxide; i.e. 160 g of iron (iii) oxide reacts with 84 g (3 * 28 g) of carbon (ii) oxide
450 g of Fe₂O₃ will react with 450 * 84/180) g of carbon (ii) oxide = 236..25 g of carbon (ii) oxide
Therefore the excess reactant is carbon (ii) oxide.
Amount of excess Carbon (ii) oxide left over = 260 - 236.25
Amount of excess Carbon (ii) oxide left over = 23.75 g