Answer:
a)KE=878.8 J
b)W=2636.4 J
Explanation:
Given that
mass ,m = 65 kg
Initial speed ,u = 5.2 m/s
a)
We know that kinetic energy KE is given as follows

m=mass
u=velocity
Now by putting the values in the above equation we get

KE=878.8 J
b)
We know that
Work done by all forces = Change in the kinetic energy
The final velocity , v= 2 u = 2 x 5.2 m/s
v= 10.4 m/s

Now by putting the values in the above equation we get

W=2636.4 J
a)KE=878.8 J
b)W=2636.4 J
Answer:
true
Explanation:
i know this im in 6th grade
Answer:
a. 16 s b. -1.866 kJ
Explanation:
a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.
We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².
Since the turntable stops at ω = 0, the time it takes to stop is gotten from
ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.
So it takes the turntable 16 s to stop.
b. The workdone by the turntable to stop W equals its rotational kinetic energy change.
So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ
Answer:
F = 75[J]
Explanation:
We know that work is defined as the product of force by distance.
In this way we have two forces, the weight of the block down, and the force that bring about the block to rise.

where:
W = work = 50 [J]
d = distance = 2 [m]
Fweight = 50 [N]
Fupward [N]
Now replacing:
![50=-(50*2)+(F_{upward}*2)\\50+100=F_{upward}*2\\F_{upward}=150/2\\F_{upward}=75[J]](https://tex.z-dn.net/?f=50%3D-%2850%2A2%29%2B%28F_%7Bupward%7D%2A2%29%5C%5C50%2B100%3DF_%7Bupward%7D%2A2%5C%5CF_%7Bupward%7D%3D150%2F2%5C%5CF_%7Bupward%7D%3D75%5BJ%5D)
Answer:
Ruko zara kuch Time dedo na please