Answer:
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Explanation:
Step 1: Data given
Mass of nitrogen gas (N2) = 13.4 grams
Molar mass of N2 = 28 g/mol
Molar mass of NH3 = 17.03 g/mol
Step 2: The balanced equation
N2 + 3H2 → 2NH3
Step 3: Calculate moles of N2
Moles N2 = Mass N2 / molar mass N2
Moles N2 = 13.4 grams / 28.00 g/mol
Moles N2 = 0.479 moles
Step 4: Calculate moles of NH3
For 1 mol N2 we need 3 moles H2 to produce 2 moles NH3
For 0.479 moles N2 we'll produce 2*0.479 = 0.958 moles
Step 5: Calculate mass of NH3
Mass of NH3 = moles NH3 * molar mass NH3
Mass NH3 = 0.958 moles * 17.03 g/mol
Mass NH3 = 16.3 grams
If 13.4 grams of nitrogen gas reacts we'll produce 16.3 grams of ammonia
Answer:
4.59 × 10⁻³⁶ kJ/photon
Explanation:
Step 1: Given and required data
- Wavelength of the violet light (λ): 433 nm
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
- Speed of light (c): 3.00 × 10⁸ m/s
Step 2: Convert "λ" to meters
We will use the conversion factor 1 m = 10⁹ nm.
433 nm × 1 m/10⁹ nm = 4.33 × 10⁷ m
Step 3: Calculate the energy (E) of the photon
We will use the Planck-Einstein's relation.
E = h × c/λ
E = 6.63 × 10⁻³⁴ J.s × (3.00 × 10⁸ m/s)/4.33 × 10⁷ m
E = 4.59 × 10⁻³³ J = 4.59 × 10⁻³⁶ kJ
Answer:
The answer is treated below.
Explanation:
<u>Natural gas</u>: Natural gas is not used in its pure form; it is processed and converted into cleaner fuel for consumption. It is a fossil fuel composed almost entirely of methane, but contain small amounts of other gases, including ethane, propane, pentane and butane. It is a combustible, gaseous mixture of simple hydrocarbon compounds, usually found in deep underground reservoirs formed by porous rock. Natural gas is mainly used as fuel for generating heat and electricity.
<u>Liquefied petroleum gas (LPG)</u>: Liquefied Petroleum Gas is a byproduct of natural gas and oil extraction and crude oil refining . At room temperature, liquefied petroleum gas is a colourless and odourless gas which consists generally of butane (C4H10) or propane (C3H8) or a mixture of both.
<u>Liquefied natural gas (LNG)</u>: Is natural gas that has been liquefied for ease of transport or storage. It is refrigerated to a very low temperature (-162 Celsius). At this temperature it becomes an odourless, non-toxic liquid that can be safely transported over long distances.
<u><em> Three countries that have most of the world’s natural gas reserves</em></u>
- Russia
- Iran
- Qatar
<em>Major advantages of using conventional natural gas as an energy resource:</em>
- It is less expensive when compared to other fossil fuels.
- It is safer and easier to store when compared to other fossil fuels
<em>Major disadvantages of using conventional natural gas as an energy resource:</em>
- It costs more to recover the remaining natural gas because of flow, access, etc.
- It is not a renewable source.
- it is a combustible material, It must be handled with care.
- It does not contribute to greenhouse gases.
Three sources of unconventional natural gas :
- <em>Tight Gas</em>
- <em>Shale Gas</em>
- <em>Coalbed Methane</em>
<u>Major problems related to the use of </u><u>Tight Gas</u>
- When Hydrofluoric acid is used to release tight gas in reserves it potentially an issue simply because the substance is so dangerous. A spill or a leak could harm workers and pollute groundwater for uses.
<u>Major problems related to the use of </u><u>Shale Gas</u>
- Risk of ground and surface water contamination.
- Have impacts on air quality.
<u>Major problems related to the use of </u><u>Coalbed Methane</u>
- The development of coalbed methane will result to soil disturbance from construction of wells, roads, and the associated pipeline and electric power rights-of-ways.
- It has impact on wildlife.
Taking into account the reaction stoichiometry, 2 moles of CaO are required to react with 2 moles of Ca(OH)₂.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
CaO + H₂O → Ca(OH)₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- CaO: 1 mole
- H₂O: 1 mole
- Ca(OH)₂: 1 mole
<h3>Moles of CaO required</h3>
The following rule of three can be applied: If by stoichiometric reaction 1 mole of Ca(OH)₂ is produced by 1 mole of CaO, 2 moles of Ca(OH)₂ are produced by how many moles of CaO?

moles of CaO= 2 moles
Finally, 2 moles of CaO are required to react with 2 moles of Ca(OH)₂.
Learn more about the reaction stoichiometry:
brainly.com/question/24741074
brainly.com/question/24653699
#SPJ1