A. To find work we need to know F and S; to find power we need to know F and V
Answer:

Explanation:
The work function of the metal corresponds to the minimum energy needed to extract a photoelectron from the metal. In this case, it is:

So, the energy of the incoming photon hitting on the metal must be at least equal to this value.
The energy of a photon is given by

where
h is the Planck's constant
c is the speed of light
is the wavelength of the photon
Using
and solving for
, we find the maximum wavelength of the radiation that will eject electrons from the metal:

And since
1 angstrom = 
The wavelength in angstroms is

The answer to this question is A - 25 N
<h2>Answer: electrostatic and gravitational force
</h2><h2 />
Mechanical energy remains constant (conserved) if only <u>conservative forces</u> act on the particles.
In this sense, the following forces are conservative:
-Gravitational
-Elastic
-Electrostatics
While the Friction Force and the Magnetic Force are not conservative.
According to this, mechanical energy is conserved in the presence of electrostatic and gravitational forces.