The kinetic energy is greater on the second hill
hope i helped have a great day
Answer:
The correct option is (b).
Explanation:
Given that,
Electric field, 
We need to find the magnitude of the force on the electron as a result of the electric field.
We know that, the electric force is given by :

So, the required force on the electron is equal to
.
Answer:
Option D
Explanation:
When another battery is added to the circuit, the power supplied through the coil and to the magnet becomes greater leading to stronger magnetic field lines being produced.
Answer:
945 j
Explanation:
You have just given the ball kinetic energy, which is given by the following equation:
KE= 1⁄2 m v2 = 1⁄2 (2.1 kg)(30 m/s)2 = 945 Joules
Answer:
» An electron is lighter than a proton.
<u>explanation</u><u>:</u>

hence it's mass number is zero

hence it's mass number is 4
<u>Therefore</u><u>,</u><u> </u><u>proton</u><u> </u><u>is</u><u> </u><u>heavier</u><u> </u><u>than</u><u> </u><u>electron</u>
» An electron has a small charge magnitude than a proton.
<u>Explanation</u><u>:</u>
An electron has charge of -1 while proton has charge of +2, therefore electron is less deflected by any energetic fields than a proton