Using Ampere's Law, the magnetic field produced inside this solenoid is given by
B = uo N I / h
where uo is the vacuum permeability, N is the number of turns in the solenoid and h is the length of the solenoid. Earth's magnetic field is around 50 microteslas in North America thus the current needed in the solenoid is
I = B h / (uo N) = (50 E-6 ) (4) / ((4 pi E-7)(6000) ) = 0.026 A
I = 26 mA
So you need a current of around 26 mA.
The speed of the wave is mathematically given as
v=2266.66m/s
A long wave with a period of about 15 minutes will travel across the oceans at a speed of approximately v=2266.66m/s
<h3>
Speed of the wave</h3>
Question Parameters:
A long wave with a period of about 15 minutes
Generally the equation for the Wave velocity is mathematically given as
v=\lambda * frequency
Where
f=1/t
Therefore
v=\lambda * frequency
v=\lambda * 1/t
Therefore, with wavelenght of the ocean as 34km
v=34*1000*1/15
v=2266.66m/s
For more information on Speed
brainly.com/question/4931057
Answer:
100 ÷ 9.58 = 10.44 (approximate answer)
If you're listening to a sound that has a steady pitch, and suddenly the
pitch goes up, then you know that two things could have happened:
EITHER ...
-- The person or other source making the sound could have
raised the pitch of the sound being produced.
OR ...
-- The person or other source making the sound could have
started moving toward you.
OR ...
-- both.
Even if the pitch of the sound leaving the source doesn't change,
you would still hear it increase if the source starts moving toward
you. That's the so-called "Doppler effect".
The metal's ability to conduct heat and become an evenly heated surface relatively quickly makes it useful for ironing. An uneven heat distribution is more likely to produce hot and cold patches, resulting in burnt clothes. Moreover, if the metal didn't conduct electricity well, the heating element would have to use more energy to produce the same amount of heat in the iron.