Here,
Height (S) = 2m
Gravity on mars (g) = 3.7m/s^2
Initial velocity (u) = 0 m/s^2
By the one of the formula of the motion,
S = ut + 1/2at^2
2 = 0 * t + 1/2*3.7*t^2
2 = 1.85t^2
t^2 = 2/1.85 = 1.081
t =1.03s
So, it will take 1.03s long..
Answer:
K = 1800 kJ
Explanation:
Given that,
The speed of the object, v = 30 m/s
Mass of the object, m = 4000 kg
We need to find the kinetic energy of the object. The formula for the kinetic energy is given by :
So, the required kinetic energy is equal to 1800 kJ.
Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Answer:
Rubber is an insulator.
Explanation:
Rubber is an insulator. Electricity will always travel "the path of least resistance." Rubber has a very high resistance, so electricity will go somewhere else to find ground.
Kinetic energy, KE, is modeled by the formula
, where m is the mass in kg and v is the velocity in m/s.
In this scenario, mass and one-half are constant but the velocity changes.
You can see that by squaring twice the velocity, that is equal to four times the original KE. Therefore, the answer is 4k.