<u>Answer:</u> The final temperature of water is 32.3°C
<u>Explanation:</u>
When two solutions are mixed, the amount of heat released by solution 1 (liquid water) will be equal to the amount of heat absorbed by solution 2 (liquid water)

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of solution 1 (liquid water) = 50.0 g
= mass of solution 2 (liquid water) = 29.0 g
= final temperature = ?
= initial temperature of solution 1 = 25°C = [273 + 25] = 298 K
= initial temperature of solution 2 = 45°C = [273 + 45] = 318 K
c = specific heat of water= 4.18 J/g.K
Putting values in equation 1, we get:
![50.0\times 4.18\times (T_{final}-298)=-[29.0\times 4.18\times (T_{final}-318)]\\\\T_{final}=305.3K](https://tex.z-dn.net/?f=50.0%5Ctimes%204.18%5Ctimes%20%28T_%7Bfinal%7D-298%29%3D-%5B29.0%5Ctimes%204.18%5Ctimes%20%28T_%7Bfinal%7D-318%29%5D%5C%5C%5C%5CT_%7Bfinal%7D%3D305.3K)
Converting this into degree Celsius, we use the conversion factor:


Hence, the final temperature of water is 32.3°C
Answer:
bent
Explanation:
The chlorite ion has been pictured in the image attached with its two main resonance contributors.
The ion has four regions of electron density as shown. On the basis of the VSEPR theory, we expect a tetrahedral geometry.
However, the ion is bent due to the effect of the lone pairs on chlorine which is the central atom in the ion. This distorts the bond angle of the ion hence the ion has a bent molecular geometry.
<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.
Answer:
The answer is letter A. Diamond
Explanation:
The diamond is a crystalline form of carbon, with a cubic structure, of the sp³ type, that is, each carbon atom of the structure is linked to four other carbon atoms, forming a tetrahedral geometry.
Find the hydroxide ion concentration of a solution with a pOH of 5.90. To solve this, use a scientific calculator and enter 5.90 and use the +/- button to make it negative and then press the 10x key.