Answer:
Hope this helps
Explanation:
https://seagrant.whoi.edu/wp-content/uploads/2018/05/ESTIMATING-POPULATION-SIZE-1.pdf
Explanation: Skeletal muscle, attached to bones, is responsible for skeletal movements. The peripheral portion of the central nervous system (CNS) controls the skeletal muscles. Thus, these muscles are under conscious, or voluntary, control. The basic unit is the muscle fiber with many nuclei. These muscle fibers are striated (having transverse streaks) and each acts independently of neighboring muscle fibers.
Answer:
THE NEW PRESSURE OF THE HELIUM GAS AT 2.98 L VOLUME IS 124.8 kPa.
AT AN INCREASE ALTITUDE, THERE IS A LOWER PRESSURE ENVIRONMENT AND THE HELIUM GAS PRESSURE DECREASES AND HENCE AN INCREASE IN VOLUME.
Explanation:
The question above follows Boyle's law of the gas law as the temperature is kept constant.
Boyle's law states that the pressure of a fixed mass of gas is inversely proportional to the volume, provided the temperature remains constant.
Mathematically, P1 V1 = P2 V2
P1 = 150 kPa = 150 *10^3 Pa
V1 = 2.48 L
V2 = 2.98 L
P2 = ?
Rearranging the equation, we obtain;
P2 = P1 V1 / V2
P2 = 150 kPa * 2.48 / 2.98
P2 = 372 *10 ^3 / 2.98
P2 = 124.8 kPa.
The new pressure of the gas when at a height which increases the volume of the helium gas to 2.98 L is 124.8 kPa.
Answer:
6.53g of K₂SO₄
Explanation:
Formula of the compound is K₂SO₄
Given parameters:
Volume of K₂SO₄ = 250mL = 250 x 10⁻³L
= 0.25L
Concentration of K₂SO₄ = 0.15M or 0. 15mol/L
Unknown:
Mass of K₂SO₄ =?
Methods:
We use the mole concept to solve this kind of problem.
>>First, we find the number of moles using the expression below:
Number of moles= concentration x volume
Solving for number of moles:
Number of moles = 0.25 x 01.5
= 0.0375mole
>>Secondly, we use the number of moles to find the mass of K₂SO₄ needed. This can be obtained using the expression below:
Mass(g) = number of moles x molar mass
Solving:
To find the molar mass of K₂SO₄, we must know the atomic mass of each element in the compound. This can be obtained using the periodic table.
For:
K = 39g
S = 32g
O = 16g
Molar mass of K₂SO₄ = (39x2) + 32 + (16x4)
= 78 +32 + 64
= 174g/mol
Using the expression:
Mass(g) = number of moles x molar mass
Mass of K₂SO₄ = 0.0375 x 174 = 6.53g