1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Likurg_2 [28]
3 years ago
14

What do scientists call water

Physics
2 answers:
Alona [7]3 years ago
5 0

Answer:

h2o

Explanation:

bc thats the rules

pickupchik [31]3 years ago
3 0

Answer:

h20

Explanation:

You might be interested in
How much net force is required to accelerate a 2000 kg car at 3.00 m/s^2
andrezito [222]

The net force required to accelerate a car is 6000 N.

Force is defined as the product of the mass and acceleration of the body. Force is used to changing the velocity that is to accelerate an object or a body of a particular mass. The unit of Force is Newton or kg m/s^2.

The formula used to calculate the net force is :

F = ma

where, F = Force

m = mass = 2000 kg

a = acceleration = 3.00 m/s^2

∴ F = 2000*3

F = 6000 N

Thus, to accelerate the car at 3.00 m/s^2 of mass 2000 kg net force required is 6000 N.

To learn more about force,

brainly.com/question/1046166

6 0
1 year ago
The law of universal gravitation states that any two objects in the universe, without exception,
STatiana [176]
A. attract each other.

The Law of Universal Gravitation discusses the phenomenon of gravity. Remember that gravity is the force that keeps us on Earth; the Earth pulls us down, and our bodies pull back.  Gravity is the force of attraction, so the correct answer is a).
3 0
3 years ago
NEED HELP ASAP WILL MARK BRAINLIEST.
-Dominant- [34]
G is the answer for apex vs / Chehhhh
3 0
3 years ago
A swimming pool has the shape of a right circular cylinder with radius 21 feet and height 10 feet. Suppose that the pool is full
AysviL [449]

Answer:

The water required to pump all the water to a platform 2 feet above the top of the pool is  is 6061310.32 foot-pound.

Explanation:

Given that,

Radius = 21 feet

Height = 10 feet

Weighing = 62.5 pounds/cubic

Work = 4329507.37572

Height = 2 feet

Let's look at a horizontal slice of water at a height of h from bottom of pool

We need to calculate the area of slice

Using formula of area

A=\pi r^2

Put the value into the formula

A=\pi\times21^2

A=441\pi\ feet^2

Thickness of slice t=\Delta h\ ft

The volume is,

V=(441\pi\times\Delta h)\ ft^3

We need to calculate the force

Using formula of force

F=W\times V

Where, W = water weight

V = volume

Put the value into the formula

F=62.5\times(441\pi\times\Delta h)

F=27562.5\pi\times\Delta h\ lbs

We need to calculate the work done

Using formula of work done

W=F\times d

Put the value into the formula

W=27562.5\pi\times\Delta h\times(10-h)\ ft\ lbs

We do this by integrating from h = 0 to h = 10

We need to find the total work,

Using formula of work done

W=\int_{0}^{h}{W}

Put the value into the formula

W=\int_{0}^{10}{27562.5\pi\\times(10-h)}dh

W=27562.5\pi(10h-\dfrac{h^2}{2})_{0}^{10}

W=27562.5\pi(10\times10-\dfrac{100}{2}-0)

W=4329507.37572

To pump 2 feet above platform, then each slice has to be lifted an extra 2 feet,

So, the total distance to lift slice is (12-h) instead of of 10-h

We need to calculate the water required to pump all the water to a platform 2 feet above the top of the pool

Using formula of work done

W=\int_{0}^{h}{W}

Put the value into the formula

W=\int_{0}^{10}{27562.5\pi\\times(12-h)}dh

W=27562.5\pi(12h-\dfrac{h^2}{2})_{0}^{10}

W=27562.5\pi(12\times10-\dfrac{100}{2}-0)

W=1929375\pi

W=6061310.32\ foot- pound

Hence, The water required to pump all the water to a platform 2 feet above the top of the pool is  is 6061310.32 foot-pound.

8 0
3 years ago
Visible light passes through a diffraction grating that has 900 slits per centimeter, and the interference pattern is observed o
kobusy [5.1K]

Answer:

\Delta \lambda=14.3\ nm

Explanation:

It is given that,

The number of lines per unit length, N = 900 slits per cm

Distance between the formed pattern and the grating, l = 2.3 m

n the first-order spectrum, maxima for two different wavelengths are separated on the screen by 2.98 mm, \Delta Y=2.98\ mm = 0.00298\ m

Let d is the slit width of the grating,

d=\dfrac{1}{N}

d=\dfrac{1}{900\ cm}

d=1.11\times 10^{-5}\ m

For the first wavelength, the position of maxima is given by :

y_1=\dfrac{L\lambda_1}{d}

For the other wavelength, the position of maxima is given by :

y_2=\dfrac{L\lambda_2}{d}

So,

\Delta \lambda=\dfrac{\Delta y d}{l}

\Delta \lambda=\dfrac{0.00298\times 1.11\times 10^{-5}}{2.3}

\Delta \lambda=1.43\times 10^{-8}\ m

or

\Delta \lambda=14.3\ nm

So, the difference between these wavelengths is 14.3 nm. Hence, this is the required solution.

3 0
3 years ago
Other questions:
  • What is the purpose of the zigzag line on the periodic table
    14·2 answers
  • As we increase the frequency of this light, but do not vary anything else (there may be more than one correct answer),
    13·1 answer
  • Can sumbody help me wit dis
    10·1 answer
  • A frictionless, massless pulley is attached to the ceiling, in a gravity field of 9.81 m/s2. Mass M2 is greater than mass m1. Th
    13·1 answer
  • As the time required to run up the stairs increases, the power developed by that person
    14·1 answer
  • Can someone give me 4 examples of comparing stars life cycle to mans life cycle
    6·1 answer
  • ABCD next 3 letters??????
    7·2 answers
  • 17.
    14·1 answer
  • Why echos are undesirable in a big hall​
    14·2 answers
  • A driver without a seat belt getting thrown from the car in a collision is an example of Newton’s?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!