Answer:
33.516 kJ
Explanation:
Potential energy is given by:
PE = mgh
Where m is the mass, g is acceleration due to gravity, and h is the height. In this case:
PE = 38kg x 9.8m/s^2 x 90m = 33516 kg m^2/s^2 = 33516 J = 33.516 kJ
Answer:
69.69 g
Explanation:
Evaporation of water will take out latent heat of vaporization. Let the mass of water be m and latent heat of vaporization of water be 2260000 J per kg
Heat taken up by evaporating water
= 2260000 x m J
Heat lost by body
= mass x specific heat of body x drop in temperature
60 x 3500 x .750 ( specific heat of human body is 3.5 kJ/kg.k)
= 157500 J
Heat loss = heat gain
2260000 m= 157500
m = .06969 kg
= 69.69 g
Answer:
The particle path will follow
(d) a circular path
Explanation:
When a charged particle having charge of magnitude '
' enters into a magnetic field such that its velocity vector '
' is perpendicular to the direction of the magnetic field '
', then it will experience a force, called Lorentz force (
), given by

As shown in the figure, the magnetic field is directed perpendicular to the plane and towards the plane (as shown by the circle and 'X'-sign) and the velocity vector is from left to right on the plane.
According to the property of cross-product, the Lorentz force (
) acting on the particle will be perpendicular to the instantaneous position of the particle, making the path of the particle to be a circular path,as shown in the figure.
Answer:
a)
= 692 N
b)
= 932 N
Explanation:
a)
According to newton's second law of motion, acceleration of an object is directly proportional to the net force acting on it. When there is no net force force acting on the body, there is no acceleration. A force is a push or a pull, and the net force ΣF is the total force, or sum of the forces exerted on an object in all directions.
∝ a
= ma
= ma
Given data:
= 800 N
Mass = m = 90 kg
acceleration = a = 1.2 m/s²
= ?
800 -
= (90)(1.2)
= 692 N
b)
According to newton's second law of motion,
∝ a
= ma
= ma
Given data:
If we assume the same friction and acceleration between player's feet and ground as calculated in part a
= 692 N
acceleration = a = 1.2 m/s²
We take the equal mass to the total mass of both the players because when the winning player push losing player backward, he exert force on the ground not only due to his mass but also due to the mass of losing player.
Mass = M = m₁ + m₂ = 110 kg + 90 kg
= 200 kg
= ?
- 692 N = (200)(1.2)
= 692 + 240
= 932 N
Yhuihoifjhh <span>F = Gm1m2 / r^2
if the masses are doubled then the force is increased by a factor of 4
if the distance is doubled the force is decreased by a factor of 1/ 2^2
the net result is no change in force</span>