<span>Rayed craters-</span><span> were the last features to form on the moon.</span>
Voltage is given by the formula
V = IR (Ohms law)
where V is the Voltage
I is the current
and R is the Resistance
Here it is given that the current is I=11
Resistance is R =12
so plugging this in the formula
V = IR
V= 11 * 12
V= 132 Volts
So the Voltage for the given dryer is 132 Volts
Answer:
The magnetic field strength due to current flowing in the wire is9.322 x 10⁻⁶ T.
Explanation:
Given;
electric current, I = 21.3 A
distance of the magnetic field from the wire, R = 45.7 cm = 0.457 m
The strength of the resulting magnetic field at the given distance is calculated as;

Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ T.m/A

Therefore, the magnetic field strength due to current flowing in the wire is 9.322 x 10⁻⁶ T.
For this case we have that by definition, the momentum equation is given by:

Where:
m: It is the mass
v: It is the velocity
According to the data we have:

Substituting:

On the other hand, if we clear the variable "mass" we have:

According to the data we have:

Thus, the mass is 
Answer:

The scalar operates only on the magnitude of the vector.
So the length of the vector may change ... becoming longer
or shorter ... but its direction doesn't change.