Answer:
2420 J
Explanation:
From the question given above, the following data were obtained:
Force (F) = 22.9 N
Angle (θ) = 35°
Distance (d) = 129 m
Workdone (Wd) =?
The work done can be obtained by using the following formula:
Wd = Fd × Cos θ
Wd = 22.9 × 129 × Cos 35
Wd = 22.9 × 129 × 0.8192
Wd ≈ 2420 J
Thus, the workdone is 2420 J.
In order to find the efficiency first we will find the Change in Potential energy of the small stone that robot picked up
First we will find the mass of the stone
As it is given that stone is spherical in shape so first we will find its volume



Now it is given that it's specific gravity is 10.8
So density of rock is

mass of the stone will be



now change in potential energy is given as

here
g = gravity on planet = 0.278 m/s^2
H = height lifted upwards = 15 cm


Now energy supplied by internal circuit of robot is given by

V = voltage supplied = 10 V
i = current = 1.83 mA
t = time = 12 s


Now efficiency is defined as the ratio of output work with given amount of energy used


so efficiency will be 23 %
Answer:According to the Equation (2), centripetal force is proportional to the square of the speed for an object of given mass M rotating in a given radius R.
Explanation:The Period T. The time T required for one complete revolution is called the period. For. constant speed. v = 2π r T holds.
<span>the speed of something in a given direction. so i think none of these</span>
"The table represents the speed of a car in a northern direction over several seconds. Column 1 would be on the x-axis, and Column 2 would be on the y-axis."
typical plot is speed or velocity on the y-axis n time on the x-axis so the ans is Column 1 should be titled “Time,” and Column 2 should be titled “Velocity.”