Answer:
The calculated density will be larger
Explanation:
The calculated density will be <u>larger</u>. Because, the volume is taken accurately, by the water displacement method. But, when we the took the mass, the water was present on the unknown solid. So, the mass of that water was added to the original mass of the solid. Hence, the mass measured was larger than the original mass. We, know from the formula of density that density is directly proportional to the mass of the object.
Density = Mass/Volume
Hence, the larger measured mass means the larger value of density.
The answer is 62.00 g/mol.
Solution:
Knowing that the freezing point of water is 0°C, temperature change Δt is
Δt = 0C - (-1.23°C) = 1.23°C
Since the van 't Hoff factor i is essentially 1 for non-electrolytes dissolved in water, we calculate for the number of moles x of the compound dissolved from the equation
Δt = i Kf m
1.23°C = (1) (1.86°C kg mol-1) (x / 0.105 kg)
x = 0.069435 mol
Therefore, the molar mass of the solute is
molar mass = 4.305g / 0.069435mol = 62.00 g/mol
For which of the following activities might you want to hire a chemist?
Answer: D. testing a rock sample for gold content
Which of the following procedures involves a physical change in one of the substances?
Answer: C. separating a salt solution by evaporating the water