1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgen [1.6K]
3 years ago
5

How can shoe and tire marks be preserved in mud?

Physics
1 answer:
dimaraw [331]3 years ago
7 0
The answer is A) Casting
You might be interested in
Now let’s apply the work–energy theorem to a more complex, multistep problem. In a pile driver, a steel hammerhead with mass 200
andrew11 [14]

Answer:

a) v = 7.67

b) n = 81562 N

Explanation:

Given:-

- The mass of hammer-head, m = 200 kg

- The height at from which hammer head drops, s12 = 3.00 m

- The amount of distance the I-beam is hammered, s23 = 7.40 cm

- The resistive force by contact of hammer-head and I-beam, F = 60.0 N

Find:-

(a) the speed of the hammerhead just as it hits the I-beam and

(b) the average force the hammerhead exerts on the I-beam.

Solution:-

- We will consider the hammer head as our system and apply the conservation of energy principle because during the journey of hammer-head up till just before it hits the I-beam there are no external forces acting on the system:

                                   ΔK.E = ΔP.E

                                  K_2 - K_1 = P_1- P_2

Where,  K_2: Kinetic energy of hammer head as it hits the I-beam

             K_1: Initial kinetic energy of hammer head ( = 0 ) ... rest

             P_2: Gravitational potential energy of hammer head as it hits the I-beam. (Datum = 0)

             P_1: Initial gravitational potential energy of hammer head      

- The expression simplifies to:

                                K_2 = P_1

Where,                     0.5*m*v2^2 = m*g*s12

                                v2 = √(2*g*s12) = √(2*9.81*3)

                                v2 = 7.67 m/s

- For the complete journey we see that there are fictitious force due to contact between hammer-head and I-beam the system is no longer conserved. All the kinetic energy is used to drive the I-beam down by distance s23. We will apply work energy principle on the system:

                               Wnet = ( P_3 - P_1 ) + W_friction

                               Wnet = m*g*s13 + F*s23

                               n*s23 = m*g*s13 + F*s23

Where,    n: average force the hammerhead exerts on the I-beam.

               s13 = s12 + s23

Hence,

                             n = m*g*( s12/s23 + 1) + F

                             n = 200*9.81*(3/0.074 + 1) + 60

                             n = 81562 N

                               

                                                   

6 0
3 years ago
A ball is thrown vertically upwards from the edge of the cliff and hits the ground at the base of the cliff with a speed of 30 m
olya-2409 [2.1K]

To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.

v = v_0 -gt

Here,

v = Final velocity

v_0 = Initial velocity

g = Acceleration due to gravity

t = Time

At t = 4s, v = -30m/s (Downward)

Therefore the initial velocity will be

-30 = v_0 -9.8(4)

v_0 = 9.2m/s

Now the position can be calculated as,

y = h +v_0t -\frac{1}{2}gt^2

When it has the ground, y=0 and the time is t=4s,

0 = h+(9.2)(4)-\frac{1}{2} (9.8)(4)^2

h = 41.6m

Therefore the cliff was initially to 41.6m from the ground

7 0
3 years ago
Air enters a turbine operating at steady state at 8 bar, 1600 K and expands to 0.8 bar. The turbine is well insulated, and kinet
kobusy [5.1K]

Answer:

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg

Explanation:

To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables

Mathematically this can be determined as

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}

Where

Temperature at inlet of turbine

Temperature at exit of turbine

Pressure at exit of turbine

Pressure at exit of turbine

The steady flow Energy equation for an open system is given as follows:

m_i = m_0 = mm(h_i+\frac{V_i^2}{2}+gZ_i)+Q = m(h_0+\frac{V_0^2}{2}+gZ_0)+W

Where,

m = mass

m(i) = mass at inlet

m(o)= Mass at outlet

h(i)= Enthalpy at inlet

h(o)= Enthalpy at outlet

W = Work done

Q = Heat transferred

v(i) = Velocity at inlet

v(o)= Velocity at outlet

Z(i)= Height at inlet

Z(o)= Height at outlet

For the insulated system with neglecting kinetic and potential energy effects

h_i = h_0 + WW = h_i -h_0

Using the relation T-P we can find the final temperature:

\frac{T_2}{T_1} = (\frac{P_2}{P_1})^{(\frac{\gamma-1}{\gamma})}\\

\frac{T_2}{1600K} = (\frac{0.8bar}{8nar})^{(\frac{1.4-1}{1.4})}\\ = 828.716K

From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

W = h_i -h_0W = C_p (T_1-T_2)W = 1.005(1600 - 828.716)W = 775.140kJ/Kg

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg

4 0
3 years ago
What is the primary function of the small intestines
ikadub [295]

Digestion and Absorbtion

7 0
3 years ago
1. How will the ice water mix with the salty water? Write your hypothesis below.
andrew11 [14]
It won't be able to mix because one will not get evaporated and it wont go together
6 0
3 years ago
Other questions:
  • Newton's cradle consists of an aligned row of identical elastic balls suspended by strings so they barely touch one another. whe
    10·1 answer
  • The type of material that will easily accept the flow of electric current is called a(n)
    7·1 answer
  • Which of the following wavelengths will produce standing waves on a string that is 3.5 m long?
    7·2 answers
  • It is easy to jump on a smooth surface than of cemented surface
    12·1 answer
  • show answer No Attempt Treated as a projectile, what is the maximum range, in meters, obtainable by a person if he or she has a
    11·2 answers
  • The law of reflection states that if the angle of incidence is 76 degrees, the angle of reflection is ___ degrees.
    7·1 answer
  • IF YOU CAN TRY TO ANSER THIS AS FAST AS YOU CAN THANKYOU. Explain the relationship between physical activity, fitness, health, a
    5·2 answers
  • Which of the following has the highest viscosity? A. corn syrup B. milk C. water D. orange juice
    15·1 answer
  • An Object with a mass of 40kg is moving at a velocity of 10 m/s. Determine its kinetic energy
    8·1 answer
  • What type of power plant is virtually pollution free
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!