We will hear the sound of siren of frequency 1553.4606 Hz.
<h3>What is Doppler Effect?</h3>
The apparent change in wave frequency brought on by the movement of a wave source is known as the Doppler effect. When the wave source is coming closer and when it is moving away, the perceived frequency changes. The Doppler effect explains why we hear a passing siren's sound changing in pitch.
according to Dopplers Effect,
![f'=[\frac{v + v_{0} }{v - v_{s} } ]f](https://tex.z-dn.net/?f=f%27%3D%5B%5Cfrac%7Bv%20%2B%20v_%7B0%7D%20%7D%7Bv%20-%20v_%7Bs%7D%20%7D%20%5Df)
![f'= [\frac{700+68.1}{700-94.8} ]* 1224](https://tex.z-dn.net/?f=f%27%3D%20%5B%5Cfrac%7B700%2B68.1%7D%7B700-94.8%7D%20%5D%2A%201224)

the frequency would be 1553.4606 Hz.
to learn more about Doppler Effect go to - brainly.com/question/9165991
#SPJ4
Answer:
the correct answer is C
Explanation:
When we express that the scale is 1:30 we mean that the objects of the realization are reduced by a factor of 30 in the graph, for example a distance of 30 cm in the graph is represented by a distance of 1 cm.
Therefore something that in the graph has n value to bring it to real size must be multiplied by the scale.
Applying this to our case if there is
10 boulder on the chart
in reality there are #_boulder = 10 30
#_boulder = 300 boulder
so the correct answer is C
Complete Question:
A coin is dropped off of a building landing on its side. It hits with a pressure of 400 N/m². It hits with a force of 0.1N. Calculate the area of the coin?
Answer:
Area = 0.00025 m²
Explanation:
Given the following data;
Pressure = 400N/m²
Force = 0.1N
To find the area of the coin;
Pressure = Force/area
Area = Force/pressure
Substituting into the equation, we have;
Area = 0.1/400
Area = 0.00025 m²
Answer:
The answers are A and C
Explanation:
the order of a humans lifespan is: Infancy, early childhood, adolescence, adulthood, then elderly
Answer:
(A) Visible
Explanation:
- The section of the electromagnetic spectrum that humans can generally see is called visible light.
White light is visible light and the range of visible wavelengths ranges from 400 - 700 nanometers.