Answer:F(of gravity) = MA
F(normal force) = MA * cos(angle)
F = 72 * 9.81 * cos28
Don't have a calculator, so can't really do all the math right there. So just plug that in
Explanation:
i dont really know
Answer:
The ball impact velocity i.e(velocity right before landing) is 6.359 m/s
Explanation:
This problem is related to parabolic motion and can be solved by the following equations:
----------------------(1)
---------(2)
----------------------- (3)
Where:
x = m is the horizontal distance travelled by the golf ball
is the golf ball's initial velocity
is the angle (it was a horizontal shot)
t is the time
y is the final height of the ball
is the initial height of the ball
g is the acceleration due gravity
V is the final velocity of the ball
Step 1: finding t
Let use the equation(2)


s
Substituting (6) in (1):
-------------------(4)
Step 2: Finding
:
From equation(4)


m/s (8)
Substituting
in (3):
v =42 .01 - 15.3566
V=26.359 m/s
The answer is asthenosphere
' W ' is the symbol for 'Watt' ... the unit of power equal to 1 joule/second.
That's all the physics we need to know to answer this question.
The rest is just arithmetic.
(60 joules/sec) · (30 days) · (8 hours/day) · (3600 sec/hour)
= (60 · 30 · 8 · 3600) (joule · day · hour · sec) / (sec · day · hour)
= 51,840,000 joules
__________________________________
Wait a minute ! Hold up ! Hee haw ! Whoa !
Excuse me. That will never do.
I see they want the answer in units of kilowatt-hours (kWh).
In that case, it's
(60 watts) · (30 days) · (8 hours/day) · (1 kW/1,000 watts)
= (60 · 30 · 8 · 1 / 1,000) (watt · day · hour · kW / day · watt)
= 14.4 kW·hour
Rounded to the nearest whole number:
14 kWh