The period of the pendulum depends only on the length from the pivot to the "center of mass". So if the string has no mass, then the amount of mass on the end doesn't make any difference.
But if the pendulum is suspended on, say, a chain with mass, then the more mass on the bottom, the lower the center of mass is, and the longer the period is.
Answer:
I think it's 3) speed and direction
Answer:
Nuestro mejor amigo escuchará la música más rápido a una temperatura de 36 ºC (309.15 K)
Explanation:
Supongase que el aire se comporta como un gas ideal y que experimenta un proceso adiabático, entonces la velocidad del sonido (
), medida en metros por segundo, queda traducida en la siguiente fórmula:
(1)
Donde:
- Coeficiente de dilatación térmica, sin unidad.
- Coeficiente universal de los gases ideales, medido en kilogramo-metros cuadrados por mol-Kelvin-segundo cuadrado.
- Temperatura, medida en Kelvin.
- Masa molar, medida en kilogramos por mol.
Como se puede ver, la velocidad del sonido es directamente proporcional a la raíz cuadrada de la temperatura. Por tanto, nuestro mejor amigo escuchará la música más rápido a una temperatura de 36 ºC (309.15 K)
Answer:
8 Hz, 48 Hz
Explanation:
The standing waves on a string (or inside a pipe, for instance) have different modes of vibrations, depending on how many segments of the string are vibrating.
The fundamental frequency of a standing wave is the frequency of the fundamental mode of vibration; then, the higher modes of vibration are called harmonics. The frequency of the n-th harmonic is given by

where
is the fundamental frequency
In this problem, we know that the wave's third harmonic has a frequency of

This means this is the frequency for n = 3. Therefore, we can find the fundamental frequency as:

Now we can also find the frequency of the 6-th harmonic using n = 6:

Is there any answers choices..?