Answer:
<h2>Mass of 1 Kg and 2 Kg, 1 meters apart.</h2>
Explanation:
The gravitational force is defined as

By definition, the gravitational force depends directly on the product of the masses and indirectly on the distance between the masses, which means the further they are, the less gravitational force would be. And, the greater the masses, the greater the gravitational force.
Among the options, the pair that would have the greatest gravitational force is Mass of 1 Kg and 2 Kg, with 1 meter between them.
Notice that the last choice includes the same masses but with a greater distance between them, that means it would be a weaker graviational force.
Therefore, the right answer is the second choice.
Answer:
0.67m/s²
Explanation:
Given parameters:
Mass of toy = 1.2kg
Force applied = 0.8N
Unknown:
Acceleration = ?
Solution:
According to newton's second law of motion;
Force = mass x acceleration
Now,
Acceleration =
Acceleration =
= 0.67m/s²
Answer:
1.1 m/s²
Explanation:
From the question,
F -mgμ = ma.................... Equation 1
Where F = applied force, m = mass of the apple cart, g = acceleration due to gravity, μ = coefficient of friction., a = acceleration of the apple cart.
Given: F = 115 N, m = 25 kg, μ = 0.35
Constant: g = 10 m/s²
Substitute these values into equation 2
115-(25×10×0.35) = 25×a
115-87.5 = 25a
25a = 27.5
a = 27.5/25
a = 1.1 m/s²