Answer:
Stage 1: 1 days.
Stage 2: 2-3 days.
Stage 3: 4-5 days.
Stage 4: 6 days.
Stage 5 (a-c): 7-12 days.
Stage 6: c. 17 days.
Stage 7: c. 19 days.
Stage 8: c. 23 days.
This is a problem involving heat transfer through radiation. The solution to this problem would be to use the formula for heat flux.
ΔQ/Δt = (1000 W/m²)∈Acosθ
A is the total surface area:
A = (1 m²) + 4(1.8 cm)(1m/100 cm)(√(1 m²))
A = 1.072 m²
ΔQ is the heat of melting ice.
ΔQ = mΔHfus
Let's find its mass knowing that the density of ice is 916.7 kg/m³.
ΔQ = (916.7 kg/m³)(1 m²)(1.8 cm)(1m/100 cm)(<span>333,550 J/kg)
</span>ΔQ = 5,503,780 J
5,503,780 J/Δt = (1000 W/m²)(0.05)(1.072 m²)(cos 33°)
<em>Δt = 122,434.691 s or 34 hours</em>
Answer:
In my opinion, I think its 2
Explanation:
Hey there!:
H is always +1 so the H's have a +3 charge.
O is always -2 so the O's have a -8 charge .
Now, suppose oxidation state for P = X , then :
+3 + X + (-8) = 0 (because of neutral molecule)
x = 8 - 3
x = + 5
So, X = +5 oxidation state.
Answer C
Hope that helps!