Answer:Paper and plastic!
Explanation:
Applying Newtons version of Kepler's third law or the orbital velocity law to the star orbiting 40000 light years from the center of the Milky Way Galaxy allows us to determine the mass of the Milky Way Galaxy that lies within 40000 light years in the galactic center.
<h3>
</h3><h3>What is orbital velocity law?</h3>
The orbital velocity law states that, the orbital velocity is directly proportional to the mass of the body for which it is being calculated and inversely proportional to the radius of the body. Earths orbital velocity near its surface is around 8km/sec if the air resistance is disregarded.
In space exploration, orbital velocity is a crucial topic. Space authorities heavily rely on it to comprehend how to launch satellites. It aids scientists in figuring out the velocities at which satellites must orbit a planet or other celestial body to prevent collapsing into it. The speed at which one body orbits the other body is known as the orbital velocity. The term "orbit" refers to an object's consistent circular motion around the Earth. The distance between the object and the earth's centre determines the orbit's velocity.
To know more about orbital velocity law, refer brainly.com/question/11353717
#SPJ4
<u>Answer:</u> The voltage needed is 35.7 V
<u>Explanation:</u>
Assuming that the resistors are arranged in parallel combination.
For the resistors arranged in parallel combination:

We are given:

Using above equation, we get:

Calculating the voltage by using Ohm's law:
.....(1)
where,
V = voltage applied
I = Current = 3.75 A
R = Resistance = 
Putting values in equation 1, we get:

Hence, the voltage needed is 35.7 V
Answer:
(a) 5142.86 m
(b) 317.5 m/s
(c) 49.3 degree C
Explanation:
m = 100 kg, Q = 1200 kcal = 1200 x 1000 x 4.2 = 504 x 10^4 J
(a) Let the altitude be h
Q = m x g x h
504 x 10^4 = 100 x 9.8 x h
h = 5142.86 m
(b) Let v be the speed
Q = 1/2 m v^2
504 x 10^4 = 1/2 x 100 x v^2
v = 317.5 m/s
(c) The temperature of normal human body, T1 = 37 degree C
Let the final temperature is T2.
Q = m x c x (T2 - T1)
504 x 10^4 = 100 x 4.1 x 1000 x (T2 - 37)
T2 = 49.3 degree C
51 inches.
This is because a stem-plot is formatted as so:
If it’s 5 on the left side of the line, anything on the right is the ones place making possible numbers 51, 53, 56, etc.
Hope this helps!