Idk tbh looooooooooooooooooooool
Answer:
5.160384 kg*m²/s
Explanation:
The vector angular momentum P can be found using the following expression:
P = I * w
I refers to the inertia, that for a sphere is found using the expression:
I =
* m * r² =
* 15.5kg * (0.510m)² = 1.61262 kg*m².
The angular velocity w is given by the problem, and has a value of 3.2 rad/s.
Replacing the data we get:
P = 1.61262 kg*m² * 3.2 rad/s = 5.160384 kg*m²/s
C. Usually when an atom loses or gains an electron, it is because it is trying to satisfy the Octet Rule. The Octet Rule states that an atom is at its stablest when it has 8 valence electrons (two in helium's case)
If you look on the periodic table, elements on the left (Alkaline Metals) are the most reactive because they only have one valence electron (or electron in the outer shell). Elements on the right (Noble Gases) are the least reactive because they have a full outer shell of 8 valence electrons.
Later on you will find that as stability decreases as you go down the periodic table but that is a discussion for a different time.
Since the two colliding objects travel together in the same direction after the collision, the total momentum is simply the total mass of the objects multiplied by their velocity