Answer:
121.3 cm^3
Explanation:
P1 = Po + 70 m water pressure (at a depth)
P2 = Po (at the surface)
T1 = 4°C = 273 + 4 = 277 K
V1 = 14 cm^3
T2 = 23 °C = 273 + 23 = 300 K
Let the volume of bubble at the surface of the lake is V2.
Density of water, d = 1000 kg/m^3
Po = atmospheric pressure = 10^5 N/m^2
P1 = 10^5 + 70 x 1000 x 10 = 8 x 10^5 N/m^2
Use the ideal gas equation

By substituting the values, we get

V2 = 121.3 cm^3
Thus, the volume of bubble at the surface of lake is 121.3 cm^3.
Answer:
The moment of inertia decreased by a factor of 4
Explanation:
Given;
initial angular velocity of the ice skater, ω₁ = 2.5 rev/s
final angular velocity of the ice skater, ω₂ = 10.0 rev/s
During this process we assume that angular momentum is conserved;
I₁ω₁ = I₂ω₂
Where;
I₁ is the initial moment of inertia
I₂ is the final moment of inertia

Therefore, the moment of inertia decreased by a factor of 4
It's called gravity, it attract the sun toward the gravitational pull making everything circulate. I don't really know how to explain it though.
Answer:
C. Converting Energy
Explanation:
Hope this helped, Have a Wonderful Day!!
Answer: The specific heat capacity is very low.
Explanation:
The specific heat capacity of a body is defined as the heat energy required by a body to cause a unit change in its temperature. The value is over low that is why it is easier for the desert sand to easily get very hot during the day. Conversely, it is very easy for the desert sand to lose it's heat a cool breeze pass over it in the night making it very cold in the night. This value also defines how long the desert sand can retain heat. Therefore, the desert sand has a low specific heat capacity.