To solve this problem divide 60 by 4.6
The answer to this problem is 13 seconds.
Answer:
The cannonball and the ball will both take the same amount of time before they hit the ground.
Explanation:
For a ball fired horizontally from a given height, there is only a vertical acceleration on it towards the ground. This acceleration is equal to the acceleration due to gravity (g = 9.81 m/s^2). A ball dropped from a height will also only experience the same vertical acceleration downwards which is also equal to g = 9.81 m/s^2.
Therefore both the cannonball and the ball will take the same amount of time to hit the ground if they are released/fired from the same height.
Can we see the diagram? Thanks.
Explanation:
a. The net force is the upward force of the chute minus the weight of the crate.
∑F = F − mg
∑F = 150 N − (11 kg) (9.8 m/s²)
∑F = 42.2 N
b. From Newton's second law, the net force equals the mass times acceleration:
∑F = ma
42.2 N = (11 kg) a
a = 3.84 m/s²
c. Acceleration is the change in velocity over change in time. Assuming the crate is released from rest:
v = at + v₀
v = (3.84 m/s²) (5 s) + (0 m/s)
v = 19.2 m/s