Using the precise speed of light in a vacuum (

), and your given distance of

, we can convert and cancel units to find the answer. The distance in m, using

, is

. Next, for the speed of light, we convert from s to min, using

, so we divide the speed of light by 60. Finally, dividing the distance between the Sun and Venus by the speed of light in km per min, we find that it is
6.405 min.
You need to set their position functions equal to one another and so for the time t when that is true. That is when the tiger and the deer are in the same place meaning the tiger catches the dear
Xdear= 2t+15 deer position function.
(I integrated the velocity function )
To get the Tigers position function you must integrate the acceleration twice. This becomes
Xtiger=t^2
Now t^2=2t+15
Time t is when the tiger catches the deer
t^2-2t-15=0
(t-5)(t+3)=0 factored
t=5s is the answer you use (t=-3 is a meaningless solution)
Answer:
The formula for force according to Newton's second law of motion is F=ma or force for an object to move is equal to mass times acceleration.
Acceleration or average acceleration defined as change in velocity per time.
F=ma
F=1.2x10³kg*(20m/s)(1/5s)=4.8x10³ Newtons
Explanation:
fthat's not the answer then i'm sorry
Answer:
a) wavelength = 656.3 nm
b) the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
Explanation:
Given that;
angle of diffraction Θₓ = 22.78°
incident angle Θ₁ = 0
slit separation d = 5900 lines per cm = 1/5900 cm = 10⁻²/5900 m = 0.01/5900 m
order of diffraction n = 1
wavelength λ = ?
to find the wavelength, we use the expression
λ = d (sinΘ₁ + sinΘₓ) / n
To find the wavelength λ;
λ = 0.01/5900 × (sin0 + sin22.78° )
λ = 6.5626 × 10⁻⁷ m
λ = 656.3 x 10⁻⁹ m
∴ λ = 656.3 nm
b)
According Balnur's series spectral lines; n₁ = 3, n₂ = 2 and
λ = R [ 1/n₂² - 1/n₁²]
where R is Rydberg's constant
from λ = R [ 1/n₂² - 1/n₁²]
R = 1/λ [n₂²n₁² / n₁² - n₂²]
R = 10⁹/ 656.3 [ 9 × 4 / 9 - 4 ]
R = 1.097 × 10⁷ m⁻¹
Therefore the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹