The term used to describe the quantity of matter that a body possesses is mass.
The tension in the cord is 14.7 N and the force of pull of the cord is 14.7 N, assuming the block is stationary.
<h3>
What is the tension in the cord?</h3>
The tension in the cord is calculated as follows;
T = ma + mg
where;
- a is the acceleration of the block
- g is acceleration due to gravity
- m is mass of the block
T = m(a + g)
T = 1.5(a + 9.8)
T = 1.5a + 14.7
Thus, the tension in the cord is (1.5a + 14.7) N.
If the block is at rest, the tension is 14.7 N.
<h3>Force of the force</h3>
The force with which the cord pulls is equal to the tension in the cord
F = T = m(a + g)
F = (1.5a + 14.7) N
If the block is stationary, a = 0, the tension and force of pull of the cord = 14.7 N.
Thus, the tension in the cord is 14.7 N and the force of pull of the cord is 14.7 N, assuming the block is stationary.
Learn more about tension here: brainly.com/question/187404
#SPJ1
When we swim we apply force and push the water backward with the help of our hands. In response, The water pushes us forward with an equal force. Thus, in order to move forward and swim, the swimmer lushes the water backward. Newton's 3rd law of motion
initial angular speed is given by 33.3 rpm


final angular speed is given by 78 rpm


now by using kinematics we will have


