Answers:
8.70 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s <em>gather all the information</em> in one place.
M_r: 32.00 44.01
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 18H₂O
m/g: 9.88
(a) Calculate the <em>moles of O₂
</em>
n = 9.88 g O₂ ×1 mol O₂ /32.00 g O₂
n = 0.3088 mol O₂
(b) Calculate the <em>moles of CO₂</em>
The molar ratio is (16 mol CO₂/25 mol O₂)
n = 0.3088 mol O₂ × (16 mol CO₂/25 mol O₂)
n = 0.1976 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
Mass of CO₂ = 0.1976 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
Mass of CO₂ = 8.70 g CO₂
Answer:
0.246 kg
Explanation:
There is some info missing. I think this is the original question.
<em>A chemist adds 370.0mL of a 2.25 M iron(III) bromide (FeBr₃) solution to a reaction flask. Calculate the mass in kilograms of iron(III) bromide the chemist has added to the flask. Be sure your answer has the correct number of significant digits.</em>
<em />
We have 370.0 mL of 2.25 M iron(III) bromide (FeBr₃) solution. The moles of FeBr₃ are:
0.3700 L × 2.25 mol/L = 0.833 mol
The molar mass of iron(III) bromide is 295.56 g/mol. The mass corresponding to 0.833 moles is:
0.833 mol × 295.56 g/mol = 246 g
1 kilogram is equal to 1000 grams. Then,
246 g × (1 kg/1000 g) = 0.246 kg
The noble gas configuration system helps to shorten the total electron configuration by using the symbol for the noble gas that lies before the particular element in the periodic table.
For example:
Na has atomic number 11
Electron configuration of Na: 1s2 2s2 2p6 3s1
Noble gas electron configuration of Na: [Ne] 3s1
Ne has atomic number 10 and lies before Na in the periodic table.