7.20594 x 10^20
First you must determine how many moles of P3O5 you have. This is done by using the formula
Number of moles (n) = mass in grams of substance (m) /divided by/ Molar mass (M) [this is the sum of the atomic mass of all atoms in the compound]
n = 0.170 / P (31 x 2) + O (16 x 5)
n = 0.170 / 142
n = 0.001197 moles
Then you use avagadros number 6.02 x10^23 this is the number of atoms in one mole of any substance. Since you have 0.001197 moles you multiply the number of moles by avagadros number
0.001197 x (6.02 x 10^23)
= 7.20594 x 10^20 atoms
I do believe the answer is A. Hope this helps.
Answer:
NO.3) Mass of Al2O3 formed = 229.5g
Answer: I'll leave the answer rounded to three sig figs.
mark me brainlist
So, you can say that in a hydrogen atom, an electron located on
n
i
=
2
that absorbs a photon of energy
4.85
⋅
10
−
19
J
can make the jump to
n
f
=
6
.
Explanation:
The question wants you to determine the energy that the incoming photon must have in order to allow the electron that absorbs it to jump from
n
i
=
2
to
n
f
=
6
.
A good starting point here will be to calculate the energy of the photon emitted when the electron falls from
n
i
=
6
to
n
f
=
2
by using the Rydberg equation.