Answer:at 21.6 min they were separated by 12 km
Explanation:
We can consider the next diagram
B2------15km/h------->Dock
|
|
B1 at 20km/h
|
|
V
So by the time B1 leaves, being B2 traveling at constant 15km/h and getting to the dock one hour later means it was at 15km from the dock, the other boat, B1 is at a distance at a given time, considering constant speed of 20km/h*t going south, where t is in hours, meanwhile from the dock the B2 is at a distance of (15km-15km/h*t), t=0, when it is 8pm.
Then we have a right triangle and the distance from boat B1 to boat B2, can be measured as the square root of (15-15*t)^2 +(20*t)^2. We are looking for a minimum, then we have to find the derivative with respect to t. This is 5*(25*t-9)/(sqrt(25*t^2-18*t+9)), this derivative is zero at t=9/25=0,36 h = 21.6 min, now to be sure it is a minimum we apply the second derivative criteria that states that if the second derivative at the given critical point is positive it means here we have a minimum, and by calculating the second derivative we find it is 720/(25 t^2 - 18 t + 9)^(3/2) that is positive at t=9/25, then we have our answer. And besides replacing the value of t we get the distance is 12 km.
The properties of the wave don't determine its speed. The properties of the medium do. You can FIND the speed by measuring the wave's frequency and wavelength.
The change in distance is 30 because if you subtract both number you'll get 30
Answer:
E = 0.18 J
Explanation:
given,
Potential of the battery,V = 9 V
Charge on the circuit, Q = 20 m C
= 20 x 10⁻³ C
energy delivered in the circuit
E = Q V
E = 20 x 10⁻³ x 9
E = 180 x 10⁻³
E = 0.18 J
Energy delivered in the circuit is equal to E = 0.18 J
Answer:
toward the center
Explanation:
Before answering, let's remind the first two Newton Laws:
1) An object at rest tends to stay at rest and an object moving at constant velocity tends to continue its motion at constant velocity, unless acted upon a net force
2) An object acted upon a net force F experiences an acceleration a according to the equation

where m is the mass of the object.
In this problem, we have an object travelling at constant speed in a circular path. The fact that the trajectory of the object is circular means that the direction of motion of the object is constantly changing: this means that its velocity is changing, so it has an acceleration. And therefore, a net force is acting on it. The force that keeps the object travelling in the circular path is called centripetal force, and it is directed towards the center of the circle (because it prevents the object from continuing its motion straight away).
So, the correct answer is
toward the center