Let's see sentence-by-sentence:
<span>- Objects within the focal length will create real images. --> false
In fact, objects within the focal length create virtual images, as it can be seen in the ray diagrams here:
https://upload.wikimedia.org/wikipedia/commons/4/47/Concavemirror_raydiagram_F.svg
- Concave mirrors converge distant parallel light rays on the focal point. --> TRUE: the parallel rays (with respect to the mirror's axis) are reflected back into the focal point of the mirror, as it can be seen also from the previous picture.
- Concave mirrors can only create real images. --> FALSE: as it can be seen from the first picture, when the object is between the focus and the mirror, its image is virtual.
Concave mirrors can create real and virtual images. --> TRUE: concave mirrors can create real and virtual images, depending on the position of the object.
- Objects far away from concave mirrors will appear enlarged. --> FALSE:
as it can be seen from the ray diagram, the size of the image is smaller than the size of the object. https://upload.wikimedia.org/wikipedia/commons/d/d2/Concavemirror_raydiagram_2F.svg
- Objects between the center of curvature and the focal point will create real images.--> TRUE: as it can be seen from the ray diagram (2F corresponds to the center of curvature), the image in this case is on the same side of the object, so it is real. </span>https://upload.wikimedia.org/wikipedia/commons/9/91/Concavemirror_raydiagram_2FE.svg
Answer:
Twice as fast
Explanation:
Solution:-
- The mass of less massive cart = m
- The mass of Massive cart = 2m
- The velocity of less massive cart = u
- The velocity of massive cart = v
- We will consider the system of two carts to be isolated and there is no external applied force on the system. This conditions validates the conservation of linear momentum to be applied on the isolated system.
- Each cart with its respective velocity are directed at each other. And meet up with head on collision and comes to rest immediately after the collision.
- The conservation of linear momentum states that the momentum of the system before ( P_i ) and after the collision ( P_f ) remains the same.

- Since the carts comes to a stop after collision then the linear momentum after the collision ( P_f = 0 ). Therefore, we have:

- The linear momentum of a particle ( cart ) is the product of its mass and velocity as follows:
m*u - 2*m*v = 0
Where,
( u ) and ( v ) are opposing velocity vectors in 1-dimension.
- Evaluate the velcoity ( u ) of the less massive cart in terms of the speed ( v ) of more massive cart as follows:
m*u = 2*m*v
u = 2*v
Answer: The velocity of less massive cart must be twice the speed of more massive cart for the system conditions to hold true i.e ( they both come to a stop after collision ).
Answer:
It is given that:
Density of material =ρ
radius of inner spherical shell = 
radius of outer spherical shell=
we know that the volume of sphere is 
Volume of the given spherical shell = 
Then mass of the spherical shell can be calculate as:
Mass, m=density/ volume
If the size of the population increases, the amount of the resource consumed will also increase