Answer:
The angular displacement of the blade is 576,871.2 radians
Explanation:
Given;
angular speed of the Helicopters rotor blades, ω = 510 rpm (revolution per minute)
time of motion, t = 3 hours
The angular speed of the Helicopters rotor blades in radian per second is given as;

The angular displacement in radian is given as;
θ = ωt
where;
t is time in seconds
θ = (53.414)(3 x 60 x 60)\\
θ = 576,871.2 radians
Therefore, the angular displacement of the blade is 576,871.2 radians
Answer:
A) Concentration of A left at equilibrium of we started the reaction with [A] = 2.00 M and [B] = 2.00 M is 0.55 M.
B) Final concentration of D at equilibrium if the initial concentrations are [A] = 1.00 M and [B] = 2.00 M is 0.90 M.
[D] = 0.90 M
Explanation:
With the first assumption that the volume of reacting mixture doesn't change throughout the reaction.
This allows us to use concentration in mol/L interchangeably with number of moles in stoichiometric calculations.
- The first attached image contains the correct question.
- The solution to part A is presented in the second attached image.
- The solution to part B is presented in the third attached image.
The shape of a liquid can change because the atoms in it are not close together to form a solid, they flow freely.
Answer:
3.0 cm
Explanation:
We can solve this problem by using the mirror equation:

where
f is the focal length of the mirror
p is the distance of the object from the mirror
q is the distance of the image from the mirror
In this problem we have:
f = 1.5 cm is the focal length of the mirror (positive for a concave mirror)
p = 3.0 cm is the distance of the object from the mirror
Therefore, the distance of the image is:

And the positive sign means that the image is real.
(The second part of the exercise is just the description of the image of the first exercise).