Answer:
The sun would appear to move more slowly across Mercury's sky.
Explanation:
This is because, the time it takes to do one spin or revolution on Mercury is 176 days (which is its period), whereas, the time it takes to do one spin or revolution on the Earth is 1 day.
Since the angular speed ω = 2π/T where T = period
So on Mercury, T' = 176days = 176 days × 24 hr/day × 60 min/hr × 60 s/min = 15,206,400 s
So, ω' = 2π/T'
= 2π/15,206,400 s
= 4.132 × 10⁻⁷ rad/s
So on Earth, T" = 1 day = 1 day × 24 hr/day × 60 min/hr × 60 s/min = 86,400 s
So, ω" = 2π/T"
= 2π/86,400 s
= 7.272 × 10⁻⁵ rad/s
Since ω' = 4.132 × 10⁻⁷ rad/s << ω" = 7.272 × 10⁻⁵ rad/s, <u>the sun would appear to move more slowly across Mercury's sky.</u>
Yes it can. i hope i helped
Nomenclature and common formula. When part of a salt, the formula of the acetate ion is written as CH3CO2−, C2H3O2−, or CH3COO−. Chemists abbreviate acetate as OAc− or, less commonly, AcO−. Thus, HOAc is the abbreviation for acetic acid, NaOAc for sodium acetate, and EtOAc for ethyl acetate.
Answer:
The answer is
<h2>1.38 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
![density = \frac{mass}{volume} \\](https://tex.z-dn.net/?f=density%20%3D%20%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%20%5C%5C%20)
From the question
mass of liquid = 138 g
volume = 100 mL
The density of the liquid is
![density = \frac{138}{100} = \frac{69}{5 0}](https://tex.z-dn.net/?f=density%20%3D%20%20%5Cfrac%7B138%7D%7B100%7D%20%20%3D%20%5Cfrac%7B69%7D%7B5%200%7D%20%20)
We have the final answer as
<h3>1.38 g/mL</h3>
Hope this helps you