Answer:
Explanation:
Energy and mass are related by the famous equation developed by Albert Einstein:
where m = mass and c = speed of light
This equation explains that an object with very small mass can produce a large amount of energy in reactions such as a nuclear reaction.
Hence, the energy produced by the explosion of a Plutonium bomb containing 3.6 grams of matter is:
E =
Answer:
46.19 L
Explanation:
The efficiency of the solar water heater is 40% which means 40% of the solar energy is converted to useful energy, ie. used to heat the water.
Useful energy = P = solar energy * available area * efficiency
P = 200 W/m^2 * 29.5 m^2 * 40%
P = 2360 W = 2.36 kJ/s
This means that 2.36 kJ of useful energy will be utilized per second. Converting this to the useful energy in hour gives us:
Average energy in one hour = 2.36 kJ/s * 3600 s/h = 8496 kJ
The specific heat capacity of water is 4.18 kJ/kg.C which means it will take 4.18 kJ of energy to raise the temperature of 1 kg of water by 1 degree C. Equating the energy change of the water for the given temperature rise and mass (unknown) to the useful energy utilized in one hour, we can solve to determine the unknown mass. This will give us the mass of water heated in one hour:
Energy = mass * specific heat capacity * (final temperature - initial temperature)
8496 = mass * 4.18 * (60 - 16)
mass = 46.19 kg
Lastly, this mass has to be converted to volume. Assuming density of water is constant through out the heating process:
volume = mass / density
volume = 46.19 kg / 1 kg/L
volume = 46.19 L
The wavelength of the first order bright band light light is 714 nm .
Explanation:
We have to find the wavelength of the first order brightness of a light. Here we are using Huygen's principle of light.
The formula is
nλ =d sinθ
where, n is the order of maximum
λ is the wavelength of light
d is the distance between the lines on diffraction grating.
θ is the angle.
For the given equation n is 1 because the problem states that the light forms 1st order bright band
λ is unknown.
d = or 0.0000014 m
sin (30) = 0.5
so,
1(λ) = (0.0000014)(0.5)
= 0.0000000714
= 714 nm
Thus, The wavelength of the first order bright band light light is 714 nm .
The metal ball lost energy while the putty ball gained energy.
<h3>What is momentum?</h3>
Momentum is the product of mass and velocity of the body. We must note that momentum before collision is equal to momentum after collision.
1) Kinetic energy before collision = 1/2mv^2 = 0.5 * 6 * 4 = 12 J
2) kinetic energy after collision = 0.5 * 6 * 2= 6 J
3) Kinetic energy of putty ball = 0.5 * 6 * 2= 6 J
4) Energy lost by the metal ball = 12 J - 6 J = 6 J
5) Energy gained by the putty ball = 6 J - 0J = 6 J
6) The rest of the energy was converted to heat after the collision.
Learn more about kinetic energy: brainly.com/question/999862
Answer:
Option (D) : The object slows down.