Answer: Given:
Initial velocity= 36km/h=36x5/18=10m/s
Final velocity =54km/h=54x5/18=15m/s
Time =10sec
Acceleration = v-u/ t
=15-10/10=5/10=1/2=0.5 m/s2
Distance =s=?
From second equation of motion:
S=ut +1/2 at^2
=10*10+1/2*0.5*10*10
=100+25
=125m
So distance travelled 125m
Hope it helps you
Higher pitched sounds produce waves which are closer together than for lower pitched sounds. A smaller triangle or cymbal will make a relatively higher pitch note
Answer:
A
Explanation:
the object's mass determines the speed of the object and its kinetic energy
Answer:
a)3.5s
b)28.57m/S
c)34.33m/S
d)44.66m/S
Explanation:
Hello!
we will solve this exercise numeral by numeral
a) to find the time the ball takes in the air we must consider that vertically the ball experiences a movement with constant acceleration whose value is gravity (9.81m / S ^ 2), that the initial vertical velocity is zero, we use the following equation for a body that moves with constant acceleration

where
Vo = Initial speed
=0
T = time
g=gravity=9.81m/s^2
y = height=60m
solving for time

T=3.5s
b)The horizontal speed remains constant since there is no horizontal acceleration.
with the value of the distance traveled (100m) and the time that lasts in the air (3.5s) we estimate the horizontal speed

c)
to find the final vertical velocity we use the equations for motion with constant velocity as follows
Vf=Vo+g.t
Vf=0+(9.81 )(3.5)=34.335m/S
d)Finally, to find the resulting velocity, we add the horizontal and vertical velocities vectorially, this is achieved by finding the square root of the sum of its squares

Answer:
a) a = 34.375 m / s², b) v_f = 550 m / s
Explanation:
This problem is the launch of projectiles, they tell us to ignore the effect of the friction force.
a) Let's start with the final part of the movement, which is carried out from t= 16 s with constant speed
v_f =
we substitute the values
v_f =
The initial part of the movement is carried out with acceleration
v_f = v₀ + a t
x₁ = x₀ + v₀ t + ½ a t²
the rocket starts from rest v₀ = 0 with an initial height x₀ = 0
x₁ = ½ a t²
v_f = a t
we substitute the values
x₁ = 1/2 a 16²
x₁ = 128 a
v_f = 16 a
let's write our system of equations
v_f =
x₁ = 128 a
v_f = 16 a
we substitute in the first equation
16 a =
16 4 a = 6600 - 128 a
a (64 + 128) = 6600
a = 6600/192
a = 34.375 m / s²
b) let's find the time to reach this height
x = ½ to t²
t² = 2y / a
t² = 2 5100 / 34.375
t² = 296.72
t = 17.2 s
We can see that for this time the acceleration is zero, so the rocket is in the constant velocity part
v_f = 16 a
v_f = 16 34.375
v_f = 550 m / s