Answer:
This depends on what angle they are approaching each other before they collided.The two simple cases are if they are running in the same direction or opposite direction from each other. For either case, use the conservation of momentum equation to solve: M_total*V_result = M1*V1 + M2*V2
Explanation:
Here are two possible solutions.
Head-on collision: M1=78, V1=8.5, M2=72, V2=-7.5 (that's negative because he's running the other way), M_total = 78+72 = 150, so V_result = (78*8.5 - 72*7.5)/150 = 0.82 m/s. Sanity check, they weigh about the same and so most of their velocity should cancel out.
Running the same way: change the sign of V2 to positive so V_result = (78*8.5 + 72*7.5)/150 = 8.02 m/s. Sanity check, they weigh about the same and the resultant speed is between the two starting velocities.
<em>hope it helps:)</em>
A meteor is the flash of light that we see in the night sky when a small chunk of interplanetary debris burns up as it passes through our atmosphere. "Meteor" refers to the flash of light caused by the debris, not the debris itself.
If any part of a meteoroid survives the fall through the atmosphere and lands on Earth, it is called a meteorite.
Answer:
Speed is a scalar quantity it has only magnitude. So in the given scenario the student actually described about the velocity.
Explanation:
In this situation, student is describing that the speed is -10 m/s. The speed with the negative sign is wrong because speed is a scalar quantity and scalar quantities have only magnitude, they do not have direction. So, his statement is wrong because he is describing the speed with the negative sign.
And also we know that velocity is a vector quantity, so it has magnitude as well as direction also. So in this situation, the student is actually want to describe the velocity because he is mentioning the magnitude in a particular direction.
Answer: The small spherical planet called "Glob" has a mass of 7.88×1018 kg and a radius of 6.32×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.44×103 m, above the surface of the planet, before it falls back down.
1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.
2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.
Explanation: To find the answer, we need to know about the different equations of planetary motion.
<h3>How to find the initial speed of the rock as it left the astronaut's hand?</h3>
- We have the expression for the initial velocity as,

- Thus, to find v, we have to find the acceleration due to gravity of glob. For this, we have,

- Now, the velocity will become,

<h3>How to find the speed of the satellite?</h3>
- As we know that, by equating both centripetal force and the gravitational force, we get the equation of speed of a satellite as,

Thus, we can conclude that,
1) the initial speed of the rock as it left the astronaut's hand is 19.46 m/s.
2) A 36.0 kg satellite is in a circular orbit with a radius of 1.45×105 m around the planet Glob. Then the speed of the satellite is 3.624km/s.
Learn more about the equations of planetary motion here:
brainly.com/question/28108487
#SPJ4
Answer:
image is vertical at distance -203.62 cm
magnification is 2.110
Explanation:
given data
n = 1.51
distance u = 96.5 cm
concave radius r1 = 24 cm
convex radius r2 = 19.1 cm
to find out
final image distance and magnification
solution
we will apply here lens formula to find focal length f
1/f = n-1 ( 1/r1 - 1/r2) .......................1
put here all value
1/f = 1.51 -1 ( -1/24 + 1/19.1)
f = 183.43
so from lens formula
1/f = 1/v + 1/u .............................2
put here all value and find v
1/183.43 = 1/v + 1/96.5
so
v = −203.62 cm
so here image is vertical at distance -203.62 cm
and
magnification are = -v /u
magnification = 203.62 / 96.5
magnification is 2.110