1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alexeev081 [22]
3 years ago
9

You drop a pencil from your desk, which is 1 meter above the floor. How long does it take for the pencil to hit the floor? How f

ast is it going just before it hits the floor?
Physics
1 answer:
vova2212 [387]3 years ago
6 0

Answer:

1. 0.45 s.

2. 4.41 m/s

Explanation:

From the question given above, the following data were obtained:

Height (h) = 1 m

Time (t) =?

Velocity (v) =?

1. Determination of the time taken for the pencil to hit the floor.

Height (h) = 1 m

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) =?

h = ½gt²

1 = ½ × 9.8 × t²

1 = 4.9 × t²

Divide both side by 4.8

t² = 1/4.9

Take the square root of both side

t = √(1/4.9)

t = 0.45 s.

Thus, it will take 0.45 s for the pencil to hit the floor.

2. Determination of the velocity with which the pencil hit the floor.

Initial velocity (u) = 0 m/s

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) = 0.45 s.

Final velocity (v) =?

v = u + gt

v = 0 + (9.8 × 0.45)

v = 0 + 4.41

v = 4.41 m/s

Thus, the pencil hit the floor with a velocity of 4.41 m/s

You might be interested in
Which of the following correctly describes the formula for speed?
Aleksandr [31]
Option C is the right answer
6 0
3 years ago
Read 2 more answers
In my trigonometry class, we were assigned a problem on Angular and Linear Velocity.
Rzqust [24]

1) 0.0011 rad/s

2) 7667 m/s

Explanation:

1)

The angular velocity of an object in circular motion is equal to the rate of change of its angular position. Mathematically:

\omega=\frac{\theta}{t}

where

\theta is the angular displacement of the object

t is the time elapsed

\omega is the angular velocity

In this problem, the Hubble telescope completes an entire orbit in 95 minutes. The angle covered in one entire orbit is

\theta=2\pi rad

And the time taken is

t=95 min \cdot 60 =5700 s

Therefore, the angular velocity of the telescope is

\omega=\frac{2\pi}{5700}=0.0011 rad/s

2)

For an object in circular motion, the relationship between angular velocity and linear velocity is given by the equation

v=\omega r

where

v is the linear velocity

\omega is the angular velocity

r is the radius of the circular orbit

In this problem:

\omega=0.0011 rad/s is the angular velocity of the Hubble telescope

The telescope is at an altitude of

h = 600 km

over the Earth's surface, which has a radius of

R = 6370 km

So the actual radius of the Hubble's orbit is

r=R+h=6370+600=6970 km = 6.97\cdot 10^6 m

Therefore, the linear velocity of the telescope is:

v=\omega r=(0.0011)(6.97\cdot 10^6)=7667 m/s

4 0
3 years ago
A girl pulls on a 10-kg wagon with a constant horizontal force of 30 n. if there are no other horizontal forces, what is the wag
olga2289 [7]
Force = mass * acceleration
F = ma

Given m = 10 kg, F = 30 N;

F = ma
30 = 10a

Solving for a:
a = 3 m/s^2

The acceleration is 3 meters per second squared.
8 0
3 years ago
Help asapp!!!!!!!!!!!!!!
IRINA_888 [86]
Sorry don’t know this one
3 0
3 years ago
wo lacrosse players collide in midair. Jeremy has a mass of 120 kg and is moving at a speed of 3 m/s. Hans has a mass of 140 kg
Julli [10]

2.71 m/s fast Hans is moving after the collision.

<u>Explanation</u>:

Given that,

Mass of Jeremy is 120 kg (M_J)

Speed of Jeremy is 3 m/s (V_J)

Speed of Jeremy after collision is (V_{JA}) -2.5 m/s

Mass of Hans is 140 kg (M_H)

Speed of Hans is -2 m/s (V_H)

Speed of Hans after collision is (V_{HA})

Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is  

= =\mathrm{M}_{1} \times \mathrm{V}_{\mathrm{J}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{H}}

Substitute the given values,

= 120 × 3 + 140 × (-2)

= 360 + (-280)

= 80 kg m/s

Linear momentum after the collision of Jeremy and Hans is  

= =\mathrm{M}_{\mathrm{J}} \times \mathrm{V}_{\mathrm{JA}}+\mathrm{M}_{\mathrm{H}} \times \mathrm{V}_{\mathrm{HA}}

= 120 × (-2.5) + 140 × V_{HA}

= -300 + 140 × V_{HA}

We know that conservation of liner momentum,

Linear momentum before the collision = Linear momentum after the collision

80 = -300 + 140 × V_{HA}

80 + 300 = 140 × V_{HA}

380 = 140 × V_{HA}

380/140= V_{HA}

V_{HA} = 2.71 m/s

2.71 m/s fast Hans is moving after the collision.

4 0
3 years ago
Other questions:
  • A graduate student has done a careful analysis of the spectrum of a star. While she has found lines from many elements, there wa
    12·1 answer
  • Find the change in the force of gravity between two planets when the distance between them is reduced to one-tenth of the origin
    10·1 answer
  • Which has a higher acceleration: a 10 kg object acted upon with a net force of 20 N or an 18 kg object acted on by a net force o
    6·1 answer
  • What is the specific fuel requirement for flight under VFR at night in an airplane?
    6·1 answer
  • 3) A charged particle is moving with velocity of V in a magnetic field of B, which one of the followings is correct: A) The dire
    15·1 answer
  • The Law of Reflection states that the Angle of Incidence will always be
    9·1 answer
  • Scientists have changed the model of the atom as they have gathered new evidence. One of the atomic models is shown below.
    7·1 answer
  • a wheelchair ramp for a business cannot be steeper than 5° a similar ramp for a home can be 10° what is the difference in degree
    7·1 answer
  • An initially motionless test car is accelerated uniformly to 120 km/h in 8.28 s before striking a simulated deer. The car is in
    15·1 answer
  • Here's the cbse syllabus for magnetic effects of electric current​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!