Option C is the right answer
1) 0.0011 rad/s
2) 7667 m/s
Explanation:
1)
The angular velocity of an object in circular motion is equal to the rate of change of its angular position. Mathematically:

where
is the angular displacement of the object
t is the time elapsed
is the angular velocity
In this problem, the Hubble telescope completes an entire orbit in 95 minutes. The angle covered in one entire orbit is
rad
And the time taken is

Therefore, the angular velocity of the telescope is

2)
For an object in circular motion, the relationship between angular velocity and linear velocity is given by the equation

where
v is the linear velocity
is the angular velocity
r is the radius of the circular orbit
In this problem:
is the angular velocity of the Hubble telescope
The telescope is at an altitude of
h = 600 km
over the Earth's surface, which has a radius of
R = 6370 km
So the actual radius of the Hubble's orbit is

Therefore, the linear velocity of the telescope is:

Force = mass * acceleration
F = ma
Given m = 10 kg, F = 30 N;
F = ma
30 = 10a
Solving for a:
a = 3 m/s^2
The acceleration is 3 meters per second squared.
Sorry don’t know this one
2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.