Answer:
See the explanation below.
Explanation:
Density will remain the same since density is the relationship between mass and volume. As we can see in the equation below.

where:
Ro = density = 2.5 [g/cm³]
m = mass [g]
V = volume [cm³]
In such a way that when the glass is broken the small fragments retain the same density ratio. That is, each fragment has a small mass and a small volume. That's why the density remains the same.
Answer:
22J
Explanation:
Given :
radius 'r'= 3cm
rotational inertia 'I'=4.5 x
kgm²
mass on one side of rope '
'= 2kg
mass on other side of rope'
' =4kg
velocity'v' of mass
' = 2m/s
Angular velocity of the pulley is given by
ω = v /r => 2/ 3x 
ω = 66.67 rad/s
For the rotating body, we have
KE =
I ω²

= 10J
Next is to calculate kinetic energy of the blocks :

=12J
Therefore, the total kinetic energy will be
KE =
=10 + 12
KE= 22J
Answer:
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
Explanation:
For this exercise let's use the relationship between momentum and momentum.
I = F t = Δp
in this case the final velocity is zero
F t = 0 -m v₀
F = m v₀ / t
in order to answer the question we must assume that the two vehicles have the same mass and speed
concrete barrier
F₁ = -p₀ / 0.1
F₁ = - 10 p₀
barrier collapses
F₂ = -p₀ / 1
let's look for the relationship of the forces
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
This question involves the concepts of equilibrium and Newton's third law of motion.
The support force will be "1 pound" for the empty bucket and the support force will be "6 pounds" after pouring water into it.
- According to the condition of equilibrium, the sum of forces acting on a stationary object must be zero. Hence, the support force of the table will be equal to the total mass of the bucket.
- According to Newton's Third Law of Motion every action force has an equal but opposite reaction force. Hence, the support force will be a reaction force to the weight of the bucket.
Therefore, the support force in each case will be equal to the total mass of the bucket:
Case 1 (empty bucket):
<u>support force = 1 pound</u>
<u></u>
Case 1 (water poured):
support force = 1 pound + 5 pound
<u>support force = 6 pound</u>
<u></u>
Learn more about equilibrium here:
brainly.com/question/9076091
This condition is called Galileo's Law of Inertia which states that all bodies accelerate at the smart rate , no matter what are their masses or size. Inertia is that tendency of matter to resist changes in its velocity. <span>Isaac Newton's first law of motion captures the concept of inertia. </span>