To solve this problem we need the concepts of Energy fluency and Intensity from chemical elements.
The energy fluency is given by the equation
Where
The energy fluency
c = Activity of the source
r = distance
E = electric field
In the other hand we have the equation for current in materials, which is given by
Then replacing our values we have that
We can conclude in this part that 1.3*10^7Bq is the activity coming out of the cylinder.
Now the energy fluency would be,
The uncollided flux density at the outer surface of the tank nearest the source is
Explanation:
time spent to run from house to school=100/5=20s
time spent to return from school=100/10=10s
average velocity=200m/(10+20)
Answer:
To decide where the balls land, we need to determine how long the balls are in the air. Both balls will take 2 seconds to hit the ground.
Explanation:
1) Time played forward : gravity & drag forces are in opposite directions so it takes a longer time to reach the ground. 2) Time played backward : gravity & drag forces are in the same direction so it takes a shorter time to reach the ground.
Answer: TRUE
Explanation:
Atoms are happy when they will not react with other elements while having a full outside ring of electrons because this makes them to be noble.
A stable atom possesses full outside ring of electrons while unstable one does not. So, they are happy also because of stability.
Answer:
=170kcal
Explanation:
We first calculate the amount of energy required to melt the alcohol using the formula: MLf, where Lf is the latent heat of fussion
We then calculate amount of heat required to raise the temperature of liquid alcohol to -14° C using MC∅. We then add the two.
Thus ΔH=MLf+MC∅
ΔH=2kg×25kcal/kg+ 2kg×(0.6kcal/kg.K×(-14-⁻114)
=50kcal+120kcal
=170kcal