Answer:
t = 1.16 s.
Explanation:
Given,
speed of conveyor belt, v = 3.2 m/s
coefficient of friction,f = 0.28
Using newton second law
f = ma
and we also know that frictional force
f = μ N
f = μ m g
equating both the force equation
a = μ g
a = 0.28 x 9.81
a = 2.75 m/s²
Using Kinematic equation
v = u + at
3.2 = 0 + 2.75 x t
t = 1.16 s.
Time taken by the box to move without slipping is 1.16 s.
Complete Question
The complete question is shown on the first uploaded image
Answer:
a it is always zero
b 0
c 
Explanation:ss
Here the net charge is on the outer surface of the conductor thus this means that the net charge inside the conductor is zero
Generally the charge density of a conductor is dependent on the charge per unit area which implies that the charge density is dependent on the net charge so this means that the charge density inside the conductor is zero
Generally the direction of electric field this from the positive charge to the negative charge so from the question we can deduce that the negative charge is located on the surface of the conductor
So We can mathematically define the charge density on the surface of the electric field as
∮
Where E is the electric field
change in unit area
is the negative charge
is the permittivity of free space
So



Where
is the charge density
Answer:
The body is said to be in static equilibrium if the net force acting on a body at rest is zero.As the net force is zero,the body will not undergo motion.
Explanation:
Answer:
The solar radiation is first intercepted by Earth's atmosphere, just a small part of the radiation is absorbed by gases such as water vapor. Some of the radiation is reflected back to space by the clouds and Earth's surface.
25 volts
Explanation:
Use Ohm's law to find the potential drop:
V = IR
= (0.5 A)(50 ohms)
= 25 volts