1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
diamong [38]
3 years ago
6

Ikes teacher tells him that this process has caused each strip of tape to gain a negative electric charge. What could ike do nex

t to demostrate that the negative charge of each strip has generated an electric field
Physics
1 answer:
bija089 [108]3 years ago
3 0

Answer:

Explanation:

Ike will need to bring positively charged object near one end of the tape, electrons in the tape act like a conductor and will be attracted to the end near the positively charged object. This leaves the other end of the tape positively charged as a result of induction. Therefore, when Ike touch the positive end of the metal rod, electrons from his body will be attracted to the positive rod and transfer onto the rod. When he remove his finger, the rod has more electrons and is will be negatively.

You might be interested in
The heat released by burning candle is an example of thermal energy
yawa3891 [41]
False the correct answer is chemical bonds instead of thermal energy
4 0
3 years ago
Read 2 more answers
The resistance created by waves on a 120-m-long ship is tested in a channel using a model that is 4 m long Y Part A If the ship
DanielleElmas [232]

Answer:

V_m = 12.78 km/hr

Explanation:

given,

length of the ship = 120 m

length of model of the ship = 4 m

Speed at which the ship travels = 70 km/h

speed of model = ?

by using froude's law

  F_r = \dfrac{V}{\sqrt{L g}}

for dynamic similarities

  (\dfrac{V}{\sqrt{L g}})_P = (\dfrac{V}{\sqrt{L g}})_{model}

  (\dfrac{V_p}{\sqrt{L_p}}) = (\dfrac{V_m}{\sqrt{L_m}})

  (\dfrac{70}{\sqrt{120}}) = (\dfrac{V_m}{\sqrt{4}})

          V_m = 12.78 km/hr

hence, the velocity of model will be 12.78 km/h

6 0
3 years ago
Is the Earth bigger than the moon​
sesenic [268]
Yes the Earth is bigger than the Moon.
The moon is one-quarter the size of Earth.
4 0
1 year ago
Read 2 more answers
Air enters a turbine operating at steady state with a pressure of 75 Ibf/in.^2, a temperature of 800º R and velocity of 400 ft/s
Arturiano [62]

Answer:

(a) W/m = 49.334 Btu/lb

(b) \frac{E_{d} }{m} = 22.12 Btu/lb

Explanation:

For the given problem, it can be assumed that the system is operating at steady state and the effects of potential energy can be neglected.

(a) Using the thermodynamic table for air.

At the temperature (T_{1})of 800 ºR and pressure (P_{1}) of 75 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{1}) = 191.81 BTu/lb

Specific entropy (s_{1}) = 0.6956 Btu/(lb.ºR)

At the temperature (T_{2})of 600 ºR and pressure (P_{2}) of 15 Ibf/in.^2, we can deduce that:

Specific enthalpy (h_{2}) = 143.47 BTu/lb

Specific entropy (s_{2}) = 0.6261 Btu/(lb.ºR)

The work done can be calculated using energy rate equation:

\frac{W}{m} = \frac{Q}{m} + (h_{1} - h_{2}) + \frac{V_{1}^{2} - V_{2}^{2}}{2}

Q/m = heat transfer = -2 Btu/lb

V_{1} = 400 ft/s

V_{2} = 100 ft/s

\frac{W}{m} = -2 + (191.81 - 143.47) + \frac{400^{2} - 100^{2}}{2}*[tex]\frac{1}{2*32.2*778}[/tex] = -2 + 48.34 + 29.938 = 49.334 Btu/lb

(b) To calculate the exergy destruction, we will use the equation for exergy rate:

\frac{E_{d} }{m} = [1-\frac{T_{o} }{T_{b} }](\frac{Q}{m}) - \frac{W}{m} + [(h_{1} - h_{2}) -T_{o}(s_{1} - s_{2}) + \frac{V^{2} _{1} - V_{2} ^{2}}{2}]

The equation above is further simplified to:

\frac{Ed}{m} = T_{o}[(s_{2} -s_{1}) - Rln\frac{P_{2} }{P_{1} } - \frac{Q/m}{T_{b} }]

Using a reference temperature (To) = 500 °R

Average surface temperature (Tb = 620°R

\frac{Ed}{m} = 500*[(0.6261 -0.6956) - (1.986/28.97)ln\frac{15 }{75 } - \frac{-2}{620}}]

\frac{E_{d} }{m} = 500*[-0.0695 +0.068688*1.609 +0.003225] = 22.12 Btu/lb

5 0
3 years ago
Grrr i don't have much time, help please T^T
mart [117]

Answer:

2. ( b ) zero

3. ( c ) 10 s

4. Uniform then decreasing

Explanation:

2.

Since the motion is uniform, initial and final velocity will be 0, hence acceleration will be zero.

3.

Initial velocity ( u ) = 5 m/s

Final velocity ( v ) = 35 m/s

Acceleration ( a ) 3 m/s^2

To find : Time ( t )

Formula : -

t = v - u / a

 = 35 - 5 / 3

 = 30 / 3

t = 10 s

4 0
2 years ago
Read 2 more answers
Other questions:
  • Two long parallel wires each carry 2.2 A in the same direction, with their centers 1.8 cm apart.A. Find the magnitude of the mag
    15·1 answer
  • Most cancer-causing air pollutants are found outdoors. True False
    11·2 answers
  • I will give you branilest
    15·1 answer
  • A 1.50 cm high diamond ring is placed 20.0 cm from a concave mirror with radius of curvature 30.00 cm. The magnification is ____
    14·1 answer
  • A thin rod (length = 2.97 m) is oriented vertically, with its bottom end attached to the floor by means of a frictionless hinge.
    10·1 answer
  • A hypothetical atom has three energy levels: the ground-state level and levels 1.50 eV and 5.00 eV above the ground state. What
    5·1 answer
  • At atom whose valence electron shell is nearly full is ________ chemically reactive. a. not b. mildly c. highly d. the name of t
    13·2 answers
  • A 5- kg object experiences forces as shown in the diagram. Which statement best describes the motion of the object
    11·1 answer
  • A ball is thrown straight up into the air from the ground with a speed of 10 m/s. What is the maximum height the ball will reach
    7·1 answer
  • A cubical gaussian surface surrounds a long, straight, charged filament that passes perpendicularly through two opposite faces.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!