Answer:
126000 J
Explanation:
Applying,
Q = cm(t₂-t₁).................. Equation 1
Where Q = Amount of heat, c = specifc heat capacity of water, m = mass of water, t₁ = Initial temperature, t₂ = Final temperature.
From the question,
Given: m = 2 kg, t₁ = 25°C, t₂ = 40°C
Constant: c = 4200 J/kg.°C
Substitute these value into equation 1
Q = 2×4200(40-25)
Q = 2×4200×15
Q = 126000 J
(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1
(a) The average speed from A to B would be 1.76 metre per second and the average velocity from A to B would also be 1.76 metre per second
<span>(b) The average speed from A to C would be 1.73 metre per second and the average velocity from A to C would be 0.87 metre per second</span>
Answer:
8.8 cm
31.422 cm/s
Explanation:
m = Mass of block = 0.6 kg
k = Spring constant = 15 N/m
x = Compression of spring
v = Velocity of block
A = Amplitude
As the energy of the system is conserved we have
Amplitude of the oscillations is 8.8 cm
At x = 0.7 A
Again, as the energy of the system is conserved we have
The block's speed is 31.422 cm/s
NHTSA (National Highway Traffic Safety Administration) now recommends the technique known as 9 and 3. Place your left hand on the left portion of the steering wheel in a location approximate to where the nine would be if the wheel was a clock. Your right hand should be placed on the right portion of the wheel where the three would be located.