Answer:
91.87 m/s
Explanation:
<u>Given:</u>
- x = initial distance of the electron from the proton = 6 cm = 0.06 m
- y = initial distance of the electron from the proton = 3 cm = 0.03 m
- u = initial velocity of the electron = 0 m/s
<u>Assume:</u>
- m = mass of an electron =

- v = final velocity of the electron
- e = magnitude of charge on an electron =

- p = magnitude of charge on a proton =

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.
Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.


Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.
Answer:
Total mass of combination = 2+3+5 = 10kg.
Acceleration produced = 2m/s^2
hence force =( total mass × acceleration)= (2×10)= 20 N.
Net force on 3kg block = acceleration × mass = (2 × 2 )= 4 N
applied force on 2 kg block = 20N
Force between 2 kg and 3 kg block = (20-4) = 16N. ans
Net force on 3 kg block = 3 × 2 =6N.
Applied force on 3 kg block due to 2 kg block = 16N.
hence, force between 3 kg and 5 kg block = (16-6) = 10N .
answers:-
(a) 20 N
(b) 16N
(c) 10 N
We first determine the vertex by using the formula,<span>-b/2a = vertex, in order to get the values for the t-coordinate. That is why we got
</span>
v_y=26.5 sin(53)=21.163v_x=26.5 cos(53)=15.948
then
let x=0since you are going to land on a 3m tally=-.5(9.8)t^2+ 21.163*t
y=0=-4.9t+21.163t=4.31
vx*4.31= total distance travelled=68.88m
Then for the first wheel, you have 15.948m=vxdetermine the time when he reaches 23 meters, that is
23/15.948=1.44218 sec
substitute t with1.44218 sec, then determine the height.
h(1.44218)=20.329
determine vertex by using a graphing calculatort=2.1594s h=22.85m
using the time value of the vertex, determine horizontal distance travelled
34.438m away from cannon
Answer:
speed = wavelength * frequency
Explanation:
Thenks and mark me brainliest :)
Very specific alignment of the Sun, Earth, and Moon. If the Moon is lined up precisely with the Sun from the Earth's point of view, the Moon will block Sunlight from reaching the Earth, causing a solar eclipse.