Answer:
required distance is 233.35 m
Explanation:
Given the data in the question;
Sound intensity
= 1.62 × 10⁻⁶ W/m²
distance r = 165 m
at what distance from the explosion is the sound intensity half this value?
we know that;
Sound intensity
is proportional to 1/(distance)²
i.e
∝ 1/r²
Now, let r² be the distance where sound intensity is half, i.e
₂ =
₁/2
Hence,
₂/
₁ = r₁²/r₂²
1/2 = (165)²/ r₂²
r₂² = 2 × (165)²
r₂² = 2 × 27225
r₂² = 54450
r₂ = √54450
r₂ = 233.35 m
Therefore, required distance is 233.35 m
Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.
Answer:
Energy = 1.38*10^13 J/mol
Explanation:
Total number of proton in F-19 = 9
Total number of neutron in F-19 = 10
Expected Mass of F-19
= 9*1.007 + 10*1.008 = 19.152 u
Actual mass of F-19 = 18.998 u
Energy of one particle of F-19 = 931.5*Δm = 931.5*(19.152-18.998)
= 143.234 MeV
Energy of one mole of F-19 = 143.234*10^6*1.6*10^-19*6.022*10^23
= 1.38*10^13 J/mol
Answer: They orbit the galactic center with many different inclinations, while disk stars all orbit in nearly the same plane. ... They have vertical motions out of the plane, making them appear to bob up and down, but they never get "too far" from the disk.
Explanation: